Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam

A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2014-11, Vol.10 (22), p.4778-4784
Hauptverfasser: Lan, Yann-Wen, Chang, Wen-Hao, Xiao, Bo-Tang, Liang, Bo-Wei, Chen, Jyun-Hong, Jiang, Pei-hsun, Li, Lain-Jong, Su, Ya-Wen, Zhong, Yuan-Liang, Chen, Chii-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4784
container_issue 22
container_start_page 4778
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 10
creator Lan, Yann-Wen
Chang, Wen-Hao
Xiao, Bo-Tang
Liang, Bo-Wei
Chen, Jyun-Hong
Jiang, Pei-hsun
Li, Lain-Jong
Su, Ya-Wen
Zhong, Yuan-Liang
Chen, Chii-Dong
description A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene. A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.
doi_str_mv 10.1002/smll.201401523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642249616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3501976971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqVw5YgscenFi8eOP3Kk1W6KCFCxRUhIyLKzk5KSj8VOWvLvyWrLCnGBk-fwvI_G8ybJc2ALYIy_im3TLDiDlIHk4kFyDAoEVYZnDw8zsKPkSYw3jAngqX6cHHEJILVQx8nXy76ZWgx0FRDJpRsGDF3dXZO-Inlw22_YIXEDWY-eAqNdS9ala5D4iRT9HV12GK4n8hG3ONRDfYtk2WA5hL4jZ-jap8mjyjURn92_J8mn1fLq_IIWH_I3568LWkqZCsoxK73MPE8hRWW0NNzApsrSeU3MmAJuOFYmU95oIX21MRvtnXdKl4opXYmT5HTv3Yb-x4hxsG0dS2wa12E_Rgsq5TzNFKj_QLlmWjMmZ_TlX-hNP4Zu_siOUmDEfNGZWuypMvQxBqzsNtStC5MFZncd2V1H9tDRHHhxrx19i5sD_ruUGcj2wF3d4PQPnV2_K4o_5XSfreOAPw9ZF75bpYWW9vP73F7l2ZezfPXWgvgFI2ipxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626183003</pqid></control><display><type>article</type><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</creator><creatorcontrib>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</creatorcontrib><description>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene. A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201401523</identifier><identifier>PMID: 25115736</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Carbon ; defect-induced knockout ; Electron beams ; Etching ; Exfoliation ; Graphene ; graphene nanoribbons ; graphene transfers ; Graphite ; heat-induced curling ; Low energy ; Nanostructure ; Nanotechnology ; Patterning ; polymer-free</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2014-11, Vol.10 (22), p.4778-4784</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</citedby><cites>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201401523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201401523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25115736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Yann-Wen</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Xiao, Bo-Tang</creatorcontrib><creatorcontrib>Liang, Bo-Wei</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Jiang, Pei-hsun</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Su, Ya-Wen</creatorcontrib><creatorcontrib>Zhong, Yuan-Liang</creatorcontrib><creatorcontrib>Chen, Chii-Dong</creatorcontrib><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene. A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</description><subject>Carbon</subject><subject>defect-induced knockout</subject><subject>Electron beams</subject><subject>Etching</subject><subject>Exfoliation</subject><subject>Graphene</subject><subject>graphene nanoribbons</subject><subject>graphene transfers</subject><subject>Graphite</subject><subject>heat-induced curling</subject><subject>Low energy</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Patterning</subject><subject>polymer-free</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEoqVw5YgscenFi8eOP3Kk1W6KCFCxRUhIyLKzk5KSj8VOWvLvyWrLCnGBk-fwvI_G8ybJc2ALYIy_im3TLDiDlIHk4kFyDAoEVYZnDw8zsKPkSYw3jAngqX6cHHEJILVQx8nXy76ZWgx0FRDJpRsGDF3dXZO-Inlw22_YIXEDWY-eAqNdS9ala5D4iRT9HV12GK4n8hG3ONRDfYtk2WA5hL4jZ-jap8mjyjURn92_J8mn1fLq_IIWH_I3568LWkqZCsoxK73MPE8hRWW0NNzApsrSeU3MmAJuOFYmU95oIX21MRvtnXdKl4opXYmT5HTv3Yb-x4hxsG0dS2wa12E_Rgsq5TzNFKj_QLlmWjMmZ_TlX-hNP4Zu_siOUmDEfNGZWuypMvQxBqzsNtStC5MFZncd2V1H9tDRHHhxrx19i5sD_ruUGcj2wF3d4PQPnV2_K4o_5XSfreOAPw9ZF75bpYWW9vP73F7l2ZezfPXWgvgFI2ipxw</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Lan, Yann-Wen</creator><creator>Chang, Wen-Hao</creator><creator>Xiao, Bo-Tang</creator><creator>Liang, Bo-Wei</creator><creator>Chen, Jyun-Hong</creator><creator>Jiang, Pei-hsun</creator><creator>Li, Lain-Jong</creator><creator>Su, Ya-Wen</creator><creator>Zhong, Yuan-Liang</creator><creator>Chen, Chii-Dong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201411</creationdate><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><author>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>defect-induced knockout</topic><topic>Electron beams</topic><topic>Etching</topic><topic>Exfoliation</topic><topic>Graphene</topic><topic>graphene nanoribbons</topic><topic>graphene transfers</topic><topic>Graphite</topic><topic>heat-induced curling</topic><topic>Low energy</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Patterning</topic><topic>polymer-free</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Yann-Wen</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Xiao, Bo-Tang</creatorcontrib><creatorcontrib>Liang, Bo-Wei</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Jiang, Pei-hsun</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Su, Ya-Wen</creatorcontrib><creatorcontrib>Zhong, Yuan-Liang</creatorcontrib><creatorcontrib>Chen, Chii-Dong</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Yann-Wen</au><au>Chang, Wen-Hao</au><au>Xiao, Bo-Tang</au><au>Liang, Bo-Wei</au><au>Chen, Jyun-Hong</au><au>Jiang, Pei-hsun</au><au>Li, Lain-Jong</au><au>Su, Ya-Wen</au><au>Zhong, Yuan-Liang</au><au>Chen, Chii-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2014-11</date><risdate>2014</risdate><volume>10</volume><issue>22</issue><spage>4778</spage><epage>4784</epage><pages>4778-4784</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene. A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25115736</pmid><doi>10.1002/smll.201401523</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2014-11, Vol.10 (22), p.4778-4784
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1642249616
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
defect-induced knockout
Electron beams
Etching
Exfoliation
Graphene
graphene nanoribbons
graphene transfers
Graphite
heat-induced curling
Low energy
Nanostructure
Nanotechnology
Patterning
polymer-free
title Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-Free%20Patterning%20of%20Graphene%20at%20Sub-10-nm%20Scale%20by%20Low-Energy%20Repetitive%20Electron%20Beam&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lan,%20Yann-Wen&rft.date=2014-11&rft.volume=10&rft.issue=22&rft.spage=4778&rft.epage=4784&rft.pages=4778-4784&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201401523&rft_dat=%3Cproquest_cross%3E3501976971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626183003&rft_id=info:pmid/25115736&rfr_iscdi=true