Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam
A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The pat...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2014-11, Vol.10 (22), p.4778-4784 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4784 |
---|---|
container_issue | 22 |
container_start_page | 4778 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 10 |
creator | Lan, Yann-Wen Chang, Wen-Hao Xiao, Bo-Tang Liang, Bo-Wei Chen, Jyun-Hong Jiang, Pei-hsun Li, Lain-Jong Su, Ya-Wen Zhong, Yuan-Liang Chen, Chii-Dong |
description | A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene.
A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively. |
doi_str_mv | 10.1002/smll.201401523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642249616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3501976971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqVw5YgscenFi8eOP3Kk1W6KCFCxRUhIyLKzk5KSj8VOWvLvyWrLCnGBk-fwvI_G8ybJc2ALYIy_im3TLDiDlIHk4kFyDAoEVYZnDw8zsKPkSYw3jAngqX6cHHEJILVQx8nXy76ZWgx0FRDJpRsGDF3dXZO-Inlw22_YIXEDWY-eAqNdS9ala5D4iRT9HV12GK4n8hG3ONRDfYtk2WA5hL4jZ-jap8mjyjURn92_J8mn1fLq_IIWH_I3568LWkqZCsoxK73MPE8hRWW0NNzApsrSeU3MmAJuOFYmU95oIX21MRvtnXdKl4opXYmT5HTv3Yb-x4hxsG0dS2wa12E_Rgsq5TzNFKj_QLlmWjMmZ_TlX-hNP4Zu_siOUmDEfNGZWuypMvQxBqzsNtStC5MFZncd2V1H9tDRHHhxrx19i5sD_ruUGcj2wF3d4PQPnV2_K4o_5XSfreOAPw9ZF75bpYWW9vP73F7l2ZezfPXWgvgFI2ipxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626183003</pqid></control><display><type>article</type><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</creator><creatorcontrib>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</creatorcontrib><description>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene.
A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201401523</identifier><identifier>PMID: 25115736</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Carbon ; defect-induced knockout ; Electron beams ; Etching ; Exfoliation ; Graphene ; graphene nanoribbons ; graphene transfers ; Graphite ; heat-induced curling ; Low energy ; Nanostructure ; Nanotechnology ; Patterning ; polymer-free</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2014-11, Vol.10 (22), p.4778-4784</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</citedby><cites>FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201401523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201401523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25115736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Yann-Wen</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Xiao, Bo-Tang</creatorcontrib><creatorcontrib>Liang, Bo-Wei</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Jiang, Pei-hsun</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Su, Ya-Wen</creatorcontrib><creatorcontrib>Zhong, Yuan-Liang</creatorcontrib><creatorcontrib>Chen, Chii-Dong</creatorcontrib><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene.
A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</description><subject>Carbon</subject><subject>defect-induced knockout</subject><subject>Electron beams</subject><subject>Etching</subject><subject>Exfoliation</subject><subject>Graphene</subject><subject>graphene nanoribbons</subject><subject>graphene transfers</subject><subject>Graphite</subject><subject>heat-induced curling</subject><subject>Low energy</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Patterning</subject><subject>polymer-free</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEoqVw5YgscenFi8eOP3Kk1W6KCFCxRUhIyLKzk5KSj8VOWvLvyWrLCnGBk-fwvI_G8ybJc2ALYIy_im3TLDiDlIHk4kFyDAoEVYZnDw8zsKPkSYw3jAngqX6cHHEJILVQx8nXy76ZWgx0FRDJpRsGDF3dXZO-Inlw22_YIXEDWY-eAqNdS9ala5D4iRT9HV12GK4n8hG3ONRDfYtk2WA5hL4jZ-jap8mjyjURn92_J8mn1fLq_IIWH_I3568LWkqZCsoxK73MPE8hRWW0NNzApsrSeU3MmAJuOFYmU95oIX21MRvtnXdKl4opXYmT5HTv3Yb-x4hxsG0dS2wa12E_Rgsq5TzNFKj_QLlmWjMmZ_TlX-hNP4Zu_siOUmDEfNGZWuypMvQxBqzsNtStC5MFZncd2V1H9tDRHHhxrx19i5sD_ruUGcj2wF3d4PQPnV2_K4o_5XSfreOAPw9ZF75bpYWW9vP73F7l2ZezfPXWgvgFI2ipxw</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Lan, Yann-Wen</creator><creator>Chang, Wen-Hao</creator><creator>Xiao, Bo-Tang</creator><creator>Liang, Bo-Wei</creator><creator>Chen, Jyun-Hong</creator><creator>Jiang, Pei-hsun</creator><creator>Li, Lain-Jong</creator><creator>Su, Ya-Wen</creator><creator>Zhong, Yuan-Liang</creator><creator>Chen, Chii-Dong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201411</creationdate><title>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</title><author>Lan, Yann-Wen ; Chang, Wen-Hao ; Xiao, Bo-Tang ; Liang, Bo-Wei ; Chen, Jyun-Hong ; Jiang, Pei-hsun ; Li, Lain-Jong ; Su, Ya-Wen ; Zhong, Yuan-Liang ; Chen, Chii-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5543-2e9cb59b2414e68758281df94511e9061282ef896b8735bfd8d7baba67c6067f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>defect-induced knockout</topic><topic>Electron beams</topic><topic>Etching</topic><topic>Exfoliation</topic><topic>Graphene</topic><topic>graphene nanoribbons</topic><topic>graphene transfers</topic><topic>Graphite</topic><topic>heat-induced curling</topic><topic>Low energy</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Patterning</topic><topic>polymer-free</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Yann-Wen</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Xiao, Bo-Tang</creatorcontrib><creatorcontrib>Liang, Bo-Wei</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Jiang, Pei-hsun</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Su, Ya-Wen</creatorcontrib><creatorcontrib>Zhong, Yuan-Liang</creatorcontrib><creatorcontrib>Chen, Chii-Dong</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Yann-Wen</au><au>Chang, Wen-Hao</au><au>Xiao, Bo-Tang</au><au>Liang, Bo-Wei</au><au>Chen, Jyun-Hong</au><au>Jiang, Pei-hsun</au><au>Li, Lain-Jong</au><au>Su, Ya-Wen</au><au>Zhong, Yuan-Liang</au><au>Chen, Chii-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2014-11</date><risdate>2014</risdate><volume>10</volume><issue>22</issue><spage>4778</spage><epage>4784</epage><pages>4778-4784</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A polymer‐free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low‐energy (5–30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect‐induced knockout process in the initial etching stage and a heat‐induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer‐free direct nanopatterning approach for graphene.
A polymer‐free, low‐energy (5–30 keV) direct electron‐beam patterning technique on both suspended and unsuspended graphene monolayers is demonstrated. The patterning mechanisms involve defect‐induced knockout and heat‐induced curling. Both exfoliated and chemical‐vapor‐deposited graphene layers are tested, and the minimum feature sizes achieved are 5 and 7 nm for the suspended and unsuspended graphene sheets, respectively.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25115736</pmid><doi>10.1002/smll.201401523</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2014-11, Vol.10 (22), p.4778-4784 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642249616 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon defect-induced knockout Electron beams Etching Exfoliation Graphene graphene nanoribbons graphene transfers Graphite heat-induced curling Low energy Nanostructure Nanotechnology Patterning polymer-free |
title | Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-Free%20Patterning%20of%20Graphene%20at%20Sub-10-nm%20Scale%20by%20Low-Energy%20Repetitive%20Electron%20Beam&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lan,%20Yann-Wen&rft.date=2014-11&rft.volume=10&rft.issue=22&rft.spage=4778&rft.epage=4784&rft.pages=4778-4784&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201401523&rft_dat=%3Cproquest_cross%3E3501976971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626183003&rft_id=info:pmid/25115736&rfr_iscdi=true |