Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters

Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2013-05, Vol.94, p.138-149
Hauptverfasser: Ganapathy, Harish, Al-Hajri, Ebrahim, Ohadi, Michael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 138
container_title Chemical engineering science
container_volume 94
creator Ganapathy, Harish
Al-Hajri, Ebrahim
Ohadi, Michael M.
description Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500μm are modeled and criteria present in the literature for domain discretization are assessed. The effects of phase field parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The predicted Taylor bubble lengths are compared against empirical correlations as well as available experimental data in the literature. The predicted gas void fraction data for different channel dimensions are compared with numerous experimental studies. The present results indicate a linear variation of gas void fraction with respect to volumetric flow ratio for all channel sizes. ► Multiphase model capable of accurately predicting hydrodynamics of fluid flow. ► Finite element implementation of phase field model applied to simulate Taylor flow. ► Addresses effect of phase field parameters for mobility and interface thickness. ► Numerical Taylor bubble length compared with experimental and empirical data. ► Gas void fraction varied linearly with volumetric flow ratio at all diameters.
doi_str_mv 10.1016/j.ces.2013.01.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642249339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250913000626</els_id><sourcerecordid>1642249339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ffadb65aab9f3a07b1d82a3750d0abb17c1a12ad862c0ba0f14097c7e41601293</originalsourceid><addsrcrecordid>eNqNkc2LFDEQxYMoOI7-AZ7M0YPdW5X-1pMufiwsuODuOVQnld0M3Z0x6VHmvzfjePAkHoqi4PdewXtCvEQoEbC92JWGU6kAqxKwhHp4JDbYd1VR19A8FhsAGArVwPBUPEtpl8-uQ9iI480DJZbO82TlHCxPfrmXwclbOk4hSjeFn9IvcvaLv5i9icE80LLwlN7IG4qrvHorPxzGccoeIc60-pBhPkE-zUnSYuX-rxd7ijTzyjE9F08cTYlf_Nlbcffp4-3ll-L66-ery_fXhan6bi2cIzu2DdE4uIqgG9H2iqquAQs0jtgZJFRk-1YZGAkc1jB0puMaW0A1VFvx-uy7j-H7gdOqZ58MTxMtHA5JY1srVQ9V9R9og1U9qDwZxTOaE0kpstP76GeKR42gT43onc6N6FMjGlDDb82rs8ZR0HQffdJ33zLQ5DbU0GfzrXh3JnK-_MNz1Ml4XgxbH9ms2gb_D_9foAOdjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513492349</pqid></control><display><type>article</type><title>Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ganapathy, Harish ; Al-Hajri, Ebrahim ; Ohadi, Michael M.</creator><creatorcontrib>Ganapathy, Harish ; Al-Hajri, Ebrahim ; Ohadi, Michael M.</creatorcontrib><description>Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500μm are modeled and criteria present in the literature for domain discretization are assessed. The effects of phase field parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The predicted Taylor bubble lengths are compared against empirical correlations as well as available experimental data in the literature. The predicted gas void fraction data for different channel dimensions are compared with numerous experimental studies. The present results indicate a linear variation of gas void fraction with respect to volumetric flow ratio for all channel sizes. ► Multiphase model capable of accurately predicting hydrodynamics of fluid flow. ► Finite element implementation of phase field model applied to simulate Taylor flow. ► Addresses effect of phase field parameters for mobility and interface thickness. ► Numerical Taylor bubble length compared with experimental and empirical data. ► Gas void fraction varied linearly with volumetric flow ratio at all diameters.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2013.01.049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Channels ; chemical engineering ; Devices ; Fluid mechanics ; heat ; Hydrodynamics ; mass transfer ; Mathematical models ; Microchannels ; Mini ; Multiphase flow ; Numerical analysis ; Phase field ; Taylor flow ; Transport ; Void fraction</subject><ispartof>Chemical engineering science, 2013-05, Vol.94, p.138-149</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ffadb65aab9f3a07b1d82a3750d0abb17c1a12ad862c0ba0f14097c7e41601293</citedby><cites>FETCH-LOGICAL-c387t-ffadb65aab9f3a07b1d82a3750d0abb17c1a12ad862c0ba0f14097c7e41601293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2013.01.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ganapathy, Harish</creatorcontrib><creatorcontrib>Al-Hajri, Ebrahim</creatorcontrib><creatorcontrib>Ohadi, Michael M.</creatorcontrib><title>Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters</title><title>Chemical engineering science</title><description>Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500μm are modeled and criteria present in the literature for domain discretization are assessed. The effects of phase field parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The predicted Taylor bubble lengths are compared against empirical correlations as well as available experimental data in the literature. The predicted gas void fraction data for different channel dimensions are compared with numerous experimental studies. The present results indicate a linear variation of gas void fraction with respect to volumetric flow ratio for all channel sizes. ► Multiphase model capable of accurately predicting hydrodynamics of fluid flow. ► Finite element implementation of phase field model applied to simulate Taylor flow. ► Addresses effect of phase field parameters for mobility and interface thickness. ► Numerical Taylor bubble length compared with experimental and empirical data. ► Gas void fraction varied linearly with volumetric flow ratio at all diameters.</description><subject>Channels</subject><subject>chemical engineering</subject><subject>Devices</subject><subject>Fluid mechanics</subject><subject>heat</subject><subject>Hydrodynamics</subject><subject>mass transfer</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Mini</subject><subject>Multiphase flow</subject><subject>Numerical analysis</subject><subject>Phase field</subject><subject>Taylor flow</subject><subject>Transport</subject><subject>Void fraction</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2LFDEQxYMoOI7-AZ7M0YPdW5X-1pMufiwsuODuOVQnld0M3Z0x6VHmvzfjePAkHoqi4PdewXtCvEQoEbC92JWGU6kAqxKwhHp4JDbYd1VR19A8FhsAGArVwPBUPEtpl8-uQ9iI480DJZbO82TlHCxPfrmXwclbOk4hSjeFn9IvcvaLv5i9icE80LLwlN7IG4qrvHorPxzGccoeIc60-pBhPkE-zUnSYuX-rxd7ijTzyjE9F08cTYlf_Nlbcffp4-3ll-L66-ery_fXhan6bi2cIzu2DdE4uIqgG9H2iqquAQs0jtgZJFRk-1YZGAkc1jB0puMaW0A1VFvx-uy7j-H7gdOqZ58MTxMtHA5JY1srVQ9V9R9og1U9qDwZxTOaE0kpstP76GeKR42gT43onc6N6FMjGlDDb82rs8ZR0HQffdJ33zLQ5DbU0GfzrXh3JnK-_MNz1Ml4XgxbH9ms2gb_D_9foAOdjw</recordid><startdate>20130503</startdate><enddate>20130503</enddate><creator>Ganapathy, Harish</creator><creator>Al-Hajri, Ebrahim</creator><creator>Ohadi, Michael M.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130503</creationdate><title>Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters</title><author>Ganapathy, Harish ; Al-Hajri, Ebrahim ; Ohadi, Michael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ffadb65aab9f3a07b1d82a3750d0abb17c1a12ad862c0ba0f14097c7e41601293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Channels</topic><topic>chemical engineering</topic><topic>Devices</topic><topic>Fluid mechanics</topic><topic>heat</topic><topic>Hydrodynamics</topic><topic>mass transfer</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Mini</topic><topic>Multiphase flow</topic><topic>Numerical analysis</topic><topic>Phase field</topic><topic>Taylor flow</topic><topic>Transport</topic><topic>Void fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganapathy, Harish</creatorcontrib><creatorcontrib>Al-Hajri, Ebrahim</creatorcontrib><creatorcontrib>Ohadi, Michael M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganapathy, Harish</au><au>Al-Hajri, Ebrahim</au><au>Ohadi, Michael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters</atitle><jtitle>Chemical engineering science</jtitle><date>2013-05-03</date><risdate>2013</risdate><volume>94</volume><spage>138</spage><epage>149</epage><pages>138-149</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500μm are modeled and criteria present in the literature for domain discretization are assessed. The effects of phase field parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The predicted Taylor bubble lengths are compared against empirical correlations as well as available experimental data in the literature. The predicted gas void fraction data for different channel dimensions are compared with numerous experimental studies. The present results indicate a linear variation of gas void fraction with respect to volumetric flow ratio for all channel sizes. ► Multiphase model capable of accurately predicting hydrodynamics of fluid flow. ► Finite element implementation of phase field model applied to simulate Taylor flow. ► Addresses effect of phase field parameters for mobility and interface thickness. ► Numerical Taylor bubble length compared with experimental and empirical data. ► Gas void fraction varied linearly with volumetric flow ratio at all diameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2013.01.049</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2013-05, Vol.94, p.138-149
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_1642249339
source ScienceDirect Journals (5 years ago - present)
subjects Channels
chemical engineering
Devices
Fluid mechanics
heat
Hydrodynamics
mass transfer
Mathematical models
Microchannels
Mini
Multiphase flow
Numerical analysis
Phase field
Taylor flow
Transport
Void fraction
title Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20field%20modeling%20of%20Taylor%20flow%20in%20mini/microchannels,%20Part%20I:%20Bubble%20formation%20mechanisms%20and%20phase%20field%20parameters&rft.jtitle=Chemical%20engineering%20science&rft.au=Ganapathy,%20Harish&rft.date=2013-05-03&rft.volume=94&rft.spage=138&rft.epage=149&rft.pages=138-149&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2013.01.049&rft_dat=%3Cproquest_cross%3E1642249339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513492349&rft_id=info:pmid/&rft_els_id=S0009250913000626&rfr_iscdi=true