Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter
Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient elect...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-07, Vol.34 (21), p.4993-5006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5006 |
---|---|
container_issue | 21 |
container_start_page | 4993 |
container_title | Biomaterials |
container_volume | 34 |
creator | Grey, Casey P Newton, Scott T Bowlin, Gary L Haas, Thomas W Simpson, David G |
description | Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = |
doi_str_mv | 10.1016/j.biomaterials.2013.03.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642248941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296121300330X</els_id><sourcerecordid>1635024132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</originalsourceid><addsrcrecordid>eNqNkkuLFDEQx4Mo7uzqV5DGk5ceK49-xIMgq67Cwh52BW8hna5IxnQyJt3CfPtNM7MiXlyoEEL96pH6FyGvKWwp0Pbtbju4OOkZk9M-bxlQvoXV-BOyoX3X142E5inZABWsli1lZ-Q85x2UNwj2nJwx3kI53YYMV0mPDsNcWTdgqtCjmVPMexeCCz-qaCuvD5hwrLLR1kY_5mrJq8vEUEjvi2tOOmQ3uxhy5cIp1ej0hKXJF-SZLX3iy9N9Qb59_nR3-aW-vrn6evnhujYN0LluLfajtrIXcrAoKOut4OU3Q9c3bctlz1rBGis6A5q2FsTYUdZ1gqJkLTWcX5A3x7z7FH8tmGc1uWzQex0wLlnREs9ELwV9BMobYAVk_0e5kCCp7GRB3x1RUwaYE1q1T27S6aAoqFU5tVN_K6dW5RSstnb_6lRnGSYc_4Q-SFWAj0cAywx_O0wqmyKcwdGlopkao3tcnff_pDHeBWe0_4kHzLu4pLDGUJWZAnW77tC6QpRDCYfv_B4EC8VV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349091979</pqid></control><display><type>article</type><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</creator><creatorcontrib>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</creatorcontrib><description>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = <250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.03.033</identifier><identifier>PMID: 23602367</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alignment ; Burst testing ; Computer Simulation ; Concentration gradient ; Delamination ; Dentistry ; Electrospinning ; Failure ; Fibers ; Hydrodynamics ; Laminates ; Materials Testing ; Microscopy, Electron, Scanning ; PCL ; Polyesters - chemistry ; Scaffolds ; Stress, Mechanical ; Tensile Strength ; Time Factors ; Tissue Engineering - methods ; Tissue engineering scaffolds ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2013-07, Vol.34 (21), p.4993-5006</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</citedby><cites>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296121300330X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23602367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grey, Casey P</creatorcontrib><creatorcontrib>Newton, Scott T</creatorcontrib><creatorcontrib>Bowlin, Gary L</creatorcontrib><creatorcontrib>Haas, Thomas W</creatorcontrib><creatorcontrib>Simpson, David G</creatorcontrib><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = <250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</description><subject>Advanced Basic Science</subject><subject>Alignment</subject><subject>Burst testing</subject><subject>Computer Simulation</subject><subject>Concentration gradient</subject><subject>Delamination</subject><subject>Dentistry</subject><subject>Electrospinning</subject><subject>Failure</subject><subject>Fibers</subject><subject>Hydrodynamics</subject><subject>Laminates</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>PCL</subject><subject>Polyesters - chemistry</subject><subject>Scaffolds</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><subject>Time Factors</subject><subject>Tissue Engineering - methods</subject><subject>Tissue engineering scaffolds</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEQx4Mo7uzqV5DGk5ceK49-xIMgq67Cwh52BW8hna5IxnQyJt3CfPtNM7MiXlyoEEL96pH6FyGvKWwp0Pbtbju4OOkZk9M-bxlQvoXV-BOyoX3X142E5inZABWsli1lZ-Q85x2UNwj2nJwx3kI53YYMV0mPDsNcWTdgqtCjmVPMexeCCz-qaCuvD5hwrLLR1kY_5mrJq8vEUEjvi2tOOmQ3uxhy5cIp1ej0hKXJF-SZLX3iy9N9Qb59_nR3-aW-vrn6evnhujYN0LluLfajtrIXcrAoKOut4OU3Q9c3bctlz1rBGis6A5q2FsTYUdZ1gqJkLTWcX5A3x7z7FH8tmGc1uWzQex0wLlnREs9ELwV9BMobYAVk_0e5kCCp7GRB3x1RUwaYE1q1T27S6aAoqFU5tVN_K6dW5RSstnb_6lRnGSYc_4Q-SFWAj0cAywx_O0wqmyKcwdGlopkao3tcnff_pDHeBWe0_4kHzLu4pLDGUJWZAnW77tC6QpRDCYfv_B4EC8VV</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Grey, Casey P</creator><creator>Newton, Scott T</creator><creator>Bowlin, Gary L</creator><creator>Haas, Thomas W</creator><creator>Simpson, David G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><author>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Alignment</topic><topic>Burst testing</topic><topic>Computer Simulation</topic><topic>Concentration gradient</topic><topic>Delamination</topic><topic>Dentistry</topic><topic>Electrospinning</topic><topic>Failure</topic><topic>Fibers</topic><topic>Hydrodynamics</topic><topic>Laminates</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>PCL</topic><topic>Polyesters - chemistry</topic><topic>Scaffolds</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><topic>Time Factors</topic><topic>Tissue Engineering - methods</topic><topic>Tissue engineering scaffolds</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grey, Casey P</creatorcontrib><creatorcontrib>Newton, Scott T</creatorcontrib><creatorcontrib>Bowlin, Gary L</creatorcontrib><creatorcontrib>Haas, Thomas W</creatorcontrib><creatorcontrib>Simpson, David G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grey, Casey P</au><au>Newton, Scott T</au><au>Bowlin, Gary L</au><au>Haas, Thomas W</au><au>Simpson, David G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>34</volume><issue>21</issue><spage>4993</spage><epage>5006</epage><pages>4993-5006</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = <250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23602367</pmid><doi>10.1016/j.biomaterials.2013.03.033</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2013-07, Vol.34 (21), p.4993-5006 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642248941 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Alignment Burst testing Computer Simulation Concentration gradient Delamination Dentistry Electrospinning Failure Fibers Hydrodynamics Laminates Materials Testing Microscopy, Electron, Scanning PCL Polyesters - chemistry Scaffolds Stress, Mechanical Tensile Strength Time Factors Tissue Engineering - methods Tissue engineering scaffolds Tissue Scaffolds - chemistry |
title | Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20fiber%20electrospinning%20of%20layered%20scaffolds%20using%20controlled%20transitions%20in%20fiber%20diameter&rft.jtitle=Biomaterials&rft.au=Grey,%20Casey%20P&rft.date=2013-07-01&rft.volume=34&rft.issue=21&rft.spage=4993&rft.epage=5006&rft.pages=4993-5006&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.03.033&rft_dat=%3Cproquest_cross%3E1635024132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349091979&rft_id=info:pmid/23602367&rft_els_id=1_s2_0_S014296121300330X&rfr_iscdi=true |