Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter

Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-07, Vol.34 (21), p.4993-5006
Hauptverfasser: Grey, Casey P, Newton, Scott T, Bowlin, Gary L, Haas, Thomas W, Simpson, David G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5006
container_issue 21
container_start_page 4993
container_title Biomaterials
container_volume 34
creator Grey, Casey P
Newton, Scott T
Bowlin, Gary L
Haas, Thomas W
Simpson, David G
description Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = 
doi_str_mv 10.1016/j.biomaterials.2013.03.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642248941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296121300330X</els_id><sourcerecordid>1635024132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</originalsourceid><addsrcrecordid>eNqNkkuLFDEQx4Mo7uzqV5DGk5ceK49-xIMgq67Cwh52BW8hna5IxnQyJt3CfPtNM7MiXlyoEEL96pH6FyGvKWwp0Pbtbju4OOkZk9M-bxlQvoXV-BOyoX3X142E5inZABWsli1lZ-Q85x2UNwj2nJwx3kI53YYMV0mPDsNcWTdgqtCjmVPMexeCCz-qaCuvD5hwrLLR1kY_5mrJq8vEUEjvi2tOOmQ3uxhy5cIp1ej0hKXJF-SZLX3iy9N9Qb59_nR3-aW-vrn6evnhujYN0LluLfajtrIXcrAoKOut4OU3Q9c3bctlz1rBGis6A5q2FsTYUdZ1gqJkLTWcX5A3x7z7FH8tmGc1uWzQex0wLlnREs9ELwV9BMobYAVk_0e5kCCp7GRB3x1RUwaYE1q1T27S6aAoqFU5tVN_K6dW5RSstnb_6lRnGSYc_4Q-SFWAj0cAywx_O0wqmyKcwdGlopkao3tcnff_pDHeBWe0_4kHzLu4pLDGUJWZAnW77tC6QpRDCYfv_B4EC8VV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349091979</pqid></control><display><type>article</type><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</creator><creatorcontrib>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</creatorcontrib><description>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = &lt;250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.03.033</identifier><identifier>PMID: 23602367</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alignment ; Burst testing ; Computer Simulation ; Concentration gradient ; Delamination ; Dentistry ; Electrospinning ; Failure ; Fibers ; Hydrodynamics ; Laminates ; Materials Testing ; Microscopy, Electron, Scanning ; PCL ; Polyesters - chemistry ; Scaffolds ; Stress, Mechanical ; Tensile Strength ; Time Factors ; Tissue Engineering - methods ; Tissue engineering scaffolds ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2013-07, Vol.34 (21), p.4993-5006</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</citedby><cites>FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296121300330X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23602367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grey, Casey P</creatorcontrib><creatorcontrib>Newton, Scott T</creatorcontrib><creatorcontrib>Bowlin, Gary L</creatorcontrib><creatorcontrib>Haas, Thomas W</creatorcontrib><creatorcontrib>Simpson, David G</creatorcontrib><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = &lt;250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</description><subject>Advanced Basic Science</subject><subject>Alignment</subject><subject>Burst testing</subject><subject>Computer Simulation</subject><subject>Concentration gradient</subject><subject>Delamination</subject><subject>Dentistry</subject><subject>Electrospinning</subject><subject>Failure</subject><subject>Fibers</subject><subject>Hydrodynamics</subject><subject>Laminates</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>PCL</subject><subject>Polyesters - chemistry</subject><subject>Scaffolds</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><subject>Time Factors</subject><subject>Tissue Engineering - methods</subject><subject>Tissue engineering scaffolds</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEQx4Mo7uzqV5DGk5ceK49-xIMgq67Cwh52BW8hna5IxnQyJt3CfPtNM7MiXlyoEEL96pH6FyGvKWwp0Pbtbju4OOkZk9M-bxlQvoXV-BOyoX3X142E5inZABWsli1lZ-Q85x2UNwj2nJwx3kI53YYMV0mPDsNcWTdgqtCjmVPMexeCCz-qaCuvD5hwrLLR1kY_5mrJq8vEUEjvi2tOOmQ3uxhy5cIp1ej0hKXJF-SZLX3iy9N9Qb59_nR3-aW-vrn6evnhujYN0LluLfajtrIXcrAoKOut4OU3Q9c3bctlz1rBGis6A5q2FsTYUdZ1gqJkLTWcX5A3x7z7FH8tmGc1uWzQex0wLlnREs9ELwV9BMobYAVk_0e5kCCp7GRB3x1RUwaYE1q1T27S6aAoqFU5tVN_K6dW5RSstnb_6lRnGSYc_4Q-SFWAj0cAywx_O0wqmyKcwdGlopkao3tcnff_pDHeBWe0_4kHzLu4pLDGUJWZAnW77tC6QpRDCYfv_B4EC8VV</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Grey, Casey P</creator><creator>Newton, Scott T</creator><creator>Bowlin, Gary L</creator><creator>Haas, Thomas W</creator><creator>Simpson, David G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</title><author>Grey, Casey P ; Newton, Scott T ; Bowlin, Gary L ; Haas, Thomas W ; Simpson, David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-6fe8daf9849bfe4128f43187b7856639826425f47c0a16f04d7127741e9261c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Alignment</topic><topic>Burst testing</topic><topic>Computer Simulation</topic><topic>Concentration gradient</topic><topic>Delamination</topic><topic>Dentistry</topic><topic>Electrospinning</topic><topic>Failure</topic><topic>Fibers</topic><topic>Hydrodynamics</topic><topic>Laminates</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>PCL</topic><topic>Polyesters - chemistry</topic><topic>Scaffolds</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><topic>Time Factors</topic><topic>Tissue Engineering - methods</topic><topic>Tissue engineering scaffolds</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grey, Casey P</creatorcontrib><creatorcontrib>Newton, Scott T</creatorcontrib><creatorcontrib>Bowlin, Gary L</creatorcontrib><creatorcontrib>Haas, Thomas W</creatorcontrib><creatorcontrib>Simpson, David G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grey, Casey P</au><au>Newton, Scott T</au><au>Bowlin, Gary L</au><au>Haas, Thomas W</au><au>Simpson, David G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>34</volume><issue>21</issue><spage>4993</spage><epage>5006</epage><pages>4993-5006</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z -axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = &lt;250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23602367</pmid><doi>10.1016/j.biomaterials.2013.03.033</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2013-07, Vol.34 (21), p.4993-5006
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1642248941
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Alignment
Burst testing
Computer Simulation
Concentration gradient
Delamination
Dentistry
Electrospinning
Failure
Fibers
Hydrodynamics
Laminates
Materials Testing
Microscopy, Electron, Scanning
PCL
Polyesters - chemistry
Scaffolds
Stress, Mechanical
Tensile Strength
Time Factors
Tissue Engineering - methods
Tissue engineering scaffolds
Tissue Scaffolds - chemistry
title Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20fiber%20electrospinning%20of%20layered%20scaffolds%20using%20controlled%20transitions%20in%20fiber%20diameter&rft.jtitle=Biomaterials&rft.au=Grey,%20Casey%20P&rft.date=2013-07-01&rft.volume=34&rft.issue=21&rft.spage=4993&rft.epage=5006&rft.pages=4993-5006&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.03.033&rft_dat=%3Cproquest_cross%3E1635024132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349091979&rft_id=info:pmid/23602367&rft_els_id=1_s2_0_S014296121300330X&rfr_iscdi=true