Detection of Total Phosphorus Concentrations of Turbid Inland Waters Using a Remote Sensing Method
Phosphorus (P) is widely known as a limiting nutrient of water eutrophication for inland freshwater ecosystems. Owing to the complexity of P chemistry, remote sensing detection of total phosphorus (TP) concentrations currently remains limited especially for optically complex turbid inland waters. To...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2014-05, Vol.225 (5), p.1-17, Article 1953 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) is widely known as a limiting nutrient of water eutrophication for inland freshwater ecosystems. Owing to the complexity of P chemistry, remote sensing detection of total phosphorus (TP) concentrations currently remains limited especially for optically complex turbid inland waters. To address this need, a new TP remote sensing algorithm is developed based on prior water optical classification and the use of support vector regression (SVR) machine. The in situ observed datasets, used in this study, were collected at specific times during 2009 ~ 2011, covering a total of 232 stations from eight cruises in Lakes Taihu, Chaohu, Dianchi, and Three Gorges reservoir of China. Three types of waters were first classified by using a recently developed NTD675 (Normalized Trough Depth of spectral reflectance at 675 nm) water classification method. Then, spectral regions sensitive specifically to each water type were explored and expressed via several band ratios and used for retrieval algorithm development. The established type-specific SVR algorithms yield relatively high predictive accuracies. Specifically, the mean absolute percentage errors (MAPE) produced with the independent validation samples were achieved at 32.7, 23.2, and 14.1 % for type 1, type 2, and type 3 waters, respectively. Such water type-specific SVR algorithms are more accurate for the classified waters than an aggregated SVR algorithm for the nonclassified water and also superior to commonly used statistical algorithms. Moreover, application of the developed algorithms with HJ1A/HSI image data demonstrates that the algorithms have a large potential for remote sensing estimation of TP concentrations in optically complex turbid inland waters. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-014-1953-6 |