Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography

In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2014-01, Vol.120, p.259-269
Hauptverfasser: Geisemeyer, I., Fertig, F., Warta, W., Rein, S., Schubert, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue
container_start_page 259
container_title Solar energy materials and solar cells
container_volume 120
creator Geisemeyer, I.
Fertig, F.
Warta, W.
Rein, S.
Schubert, M.C.
description In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading conditions leading to the most critical hot spot temperature do not necessarily coincide with the shading conditions for the maximum total power dissipation in the shaded cell. In fact, for an adequate prediction of temperature fields and the worst case shading scenario, spatially resolved information of the power dissipation on cell level and a thermal simulation of the module system are indispensable. Our approach is divided into three steps, starting with an electric network simulation of cell operating points for different shading scenarios. For these operating points we perform spatially resolved lock-in thermography measurements of the power dissipation on cell level. On that basis we compute three-dimensional temperature fields inside the module with a finite-element analysis for different realistic module operating conditions. The model is validated with experimental data on a module of industrial cells. •We predict hot spot temperatures in c-Si PV modules prior to fabrication.•We determine critical shading conditions for mc-Si solar cells.•We propose a thermal model including local power dissipation accounting for inhomogeneous reverse breakdown.•We compute three-dimensional temperature fields inside a module.•We validate our method on a module of industrial cells.
doi_str_mv 10.1016/j.solmat.2013.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642243826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024813004856</els_id><sourcerecordid>1534857249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-94dab15fb70c50cfbecb802643ac7f3f1d79a2dced9b7b343a97dfd1bb4e1a7c3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEkPhDVh4g8QmwX-J4w0SqvipVIkugK3l2NcdD04cbKdoHoM3xtOpWAIrW0ffPdc-p2leEtwRTIY3hy7HMOvSUUxYh2VXxUfNjoxCtozJ8XGzw5KKFlM-Pm2e5XzAGNOB8V3z6yaB9ab4uKDoUPbBm3q9-YbmaLcAqMC8QtJlS4BcTGgfC8prLBnpxaKfMeWCjM6AVp2K1wHlvbZ-ua1WZdMn34y2fC-s-gSEI0pQ33sHFoVovrd-QWUPaY63Sa_74_PmidMhw4uH86L5-uH9l8tP7fXnj1eX765bw1lfWsmtnkjvJoFNj42bwExj_RRn2gjHHLFCamoNWDmJiVVZCussmSYORAvDLprXZ981xR8b5KJmnw2EoBeIW1Zk4JRyNtac_on2jI-9oFz-B0oxG0bGeUX5GTUp5pzAqTX5WaejIlidelUHde5VnXpVWKoq1rFXDxt0Njq4pBfj859ZOmLes0FU7u2ZgxrinYeksvGw1EB8AlOUjf7vi34DZty_Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520368344</pqid></control><display><type>article</type><title>Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Geisemeyer, I. ; Fertig, F. ; Warta, W. ; Rein, S. ; Schubert, M.C.</creator><creatorcontrib>Geisemeyer, I. ; Fertig, F. ; Warta, W. ; Rein, S. ; Schubert, M.C.</creatorcontrib><description>In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading conditions leading to the most critical hot spot temperature do not necessarily coincide with the shading conditions for the maximum total power dissipation in the shaded cell. In fact, for an adequate prediction of temperature fields and the worst case shading scenario, spatially resolved information of the power dissipation on cell level and a thermal simulation of the module system are indispensable. Our approach is divided into three steps, starting with an electric network simulation of cell operating points for different shading scenarios. For these operating points we perform spatially resolved lock-in thermography measurements of the power dissipation on cell level. On that basis we compute three-dimensional temperature fields inside the module with a finite-element analysis for different realistic module operating conditions. The model is validated with experimental data on a module of industrial cells. •We predict hot spot temperatures in c-Si PV modules prior to fabrication.•We determine critical shading conditions for mc-Si solar cells.•We propose a thermal model including local power dissipation accounting for inhomogeneous reverse breakdown.•We compute three-dimensional temperature fields inside a module.•We validate our method on a module of industrial cells.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2013.09.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Diode breakdown ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Hot spots ; Miscellaneous ; Module ; Modules ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Power dissipation ; Power networks and lines ; Shading ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Temperature distribution ; Thermal modeling ; Thermography</subject><ispartof>Solar energy materials and solar cells, 2014-01, Vol.120, p.259-269</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-94dab15fb70c50cfbecb802643ac7f3f1d79a2dced9b7b343a97dfd1bb4e1a7c3</citedby><cites>FETCH-LOGICAL-c435t-94dab15fb70c50cfbecb802643ac7f3f1d79a2dced9b7b343a97dfd1bb4e1a7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2013.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28045367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Geisemeyer, I.</creatorcontrib><creatorcontrib>Fertig, F.</creatorcontrib><creatorcontrib>Warta, W.</creatorcontrib><creatorcontrib>Rein, S.</creatorcontrib><creatorcontrib>Schubert, M.C.</creatorcontrib><title>Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography</title><title>Solar energy materials and solar cells</title><description>In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading conditions leading to the most critical hot spot temperature do not necessarily coincide with the shading conditions for the maximum total power dissipation in the shaded cell. In fact, for an adequate prediction of temperature fields and the worst case shading scenario, spatially resolved information of the power dissipation on cell level and a thermal simulation of the module system are indispensable. Our approach is divided into three steps, starting with an electric network simulation of cell operating points for different shading scenarios. For these operating points we perform spatially resolved lock-in thermography measurements of the power dissipation on cell level. On that basis we compute three-dimensional temperature fields inside the module with a finite-element analysis for different realistic module operating conditions. The model is validated with experimental data on a module of industrial cells. •We predict hot spot temperatures in c-Si PV modules prior to fabrication.•We determine critical shading conditions for mc-Si solar cells.•We propose a thermal model including local power dissipation accounting for inhomogeneous reverse breakdown.•We compute three-dimensional temperature fields inside a module.•We validate our method on a module of industrial cells.</description><subject>Applied sciences</subject><subject>Diode breakdown</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Hot spots</subject><subject>Miscellaneous</subject><subject>Module</subject><subject>Modules</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Power dissipation</subject><subject>Power networks and lines</subject><subject>Shading</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Temperature distribution</subject><subject>Thermal modeling</subject><subject>Thermography</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEkPhDVh4g8QmwX-J4w0SqvipVIkugK3l2NcdD04cbKdoHoM3xtOpWAIrW0ffPdc-p2leEtwRTIY3hy7HMOvSUUxYh2VXxUfNjoxCtozJ8XGzw5KKFlM-Pm2e5XzAGNOB8V3z6yaB9ab4uKDoUPbBm3q9-YbmaLcAqMC8QtJlS4BcTGgfC8prLBnpxaKfMeWCjM6AVp2K1wHlvbZ-ua1WZdMn34y2fC-s-gSEI0pQ33sHFoVovrd-QWUPaY63Sa_74_PmidMhw4uH86L5-uH9l8tP7fXnj1eX765bw1lfWsmtnkjvJoFNj42bwExj_RRn2gjHHLFCamoNWDmJiVVZCussmSYORAvDLprXZ981xR8b5KJmnw2EoBeIW1Zk4JRyNtac_on2jI-9oFz-B0oxG0bGeUX5GTUp5pzAqTX5WaejIlidelUHde5VnXpVWKoq1rFXDxt0Njq4pBfj859ZOmLes0FU7u2ZgxrinYeksvGw1EB8AlOUjf7vi34DZty_Ng</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Geisemeyer, I.</creator><creator>Fertig, F.</creator><creator>Warta, W.</creator><creator>Rein, S.</creator><creator>Schubert, M.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography</title><author>Geisemeyer, I. ; Fertig, F. ; Warta, W. ; Rein, S. ; Schubert, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-94dab15fb70c50cfbecb802643ac7f3f1d79a2dced9b7b343a97dfd1bb4e1a7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Diode breakdown</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Hot spots</topic><topic>Miscellaneous</topic><topic>Module</topic><topic>Modules</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Power dissipation</topic><topic>Power networks and lines</topic><topic>Shading</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Temperature distribution</topic><topic>Thermal modeling</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geisemeyer, I.</creatorcontrib><creatorcontrib>Fertig, F.</creatorcontrib><creatorcontrib>Warta, W.</creatorcontrib><creatorcontrib>Rein, S.</creatorcontrib><creatorcontrib>Schubert, M.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisemeyer, I.</au><au>Fertig, F.</au><au>Warta, W.</au><au>Rein, S.</au><au>Schubert, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-01</date><risdate>2014</risdate><volume>120</volume><spage>259</spage><epage>269</epage><pages>259-269</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading conditions leading to the most critical hot spot temperature do not necessarily coincide with the shading conditions for the maximum total power dissipation in the shaded cell. In fact, for an adequate prediction of temperature fields and the worst case shading scenario, spatially resolved information of the power dissipation on cell level and a thermal simulation of the module system are indispensable. Our approach is divided into three steps, starting with an electric network simulation of cell operating points for different shading scenarios. For these operating points we perform spatially resolved lock-in thermography measurements of the power dissipation on cell level. On that basis we compute three-dimensional temperature fields inside the module with a finite-element analysis for different realistic module operating conditions. The model is validated with experimental data on a module of industrial cells. •We predict hot spot temperatures in c-Si PV modules prior to fabrication.•We determine critical shading conditions for mc-Si solar cells.•We propose a thermal model including local power dissipation accounting for inhomogeneous reverse breakdown.•We compute three-dimensional temperature fields inside a module.•We validate our method on a module of industrial cells.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2013.09.016</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2014-01, Vol.120, p.259-269
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1642243826
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Diode breakdown
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Equipments, installations and applications
Exact sciences and technology
Hot spots
Miscellaneous
Module
Modules
Natural energy
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Power dissipation
Power networks and lines
Shading
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Temperature distribution
Thermal modeling
Thermography
title Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20silicon%20PV%20module%20temperature%20for%20hot%20spots%20and%20worst%20case%20partial%20shading%20situations%20using%20spatially%20resolved%20lock-in%20thermography&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Geisemeyer,%20I.&rft.date=2014-01&rft.volume=120&rft.spage=259&rft.epage=269&rft.pages=259-269&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2013.09.016&rft_dat=%3Cproquest_cross%3E1534857249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520368344&rft_id=info:pmid/&rft_els_id=S0927024813004856&rfr_iscdi=true