A particle-image based wave profile measurement technique

Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2007-01, Vol.42 (1), p.131-142
Hauptverfasser: MUKTO, M. A, ATMANE, M. A, LOEWEN, M. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 131
container_title Experiments in fluids
container_volume 42
creator MUKTO, M. A
ATMANE, M. A
LOEWEN, M. R
description Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.
doi_str_mv 10.1007/s00348-006-0226-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642238366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512335712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwA7j1gsQlYNdJmh6niS9pEhc4R2nqQlHbjaQD8e_ptEkcudgX-7HfR4hLhBsEKG4TACkrAYyEPDfSHIkZKsolIqpjMYMiJ6msUafiLKUPANQl2JkoF9nGx7ENHcu292-cVT5xnX37L842cd20HWc9-7SN3PMwZiOH96H93PK5OGl8l_ji0Ofi9f7uZfkoV88PT8vFSgZSOEo04EmRrWtldYV1rU2BhSFbEbDVoa48lwq0t6pEq5qiKhtjS6BKeQWkaS6u99zpm-lsGl3fpsBd5wdeb5NDo_KcLBnz_6jGnEgXU50L3I-GuE4pcuM2ccoffxyC2xl1e6NuMup2Rt0Of3XA-xR810Q_hDb9LdopxgSnXxxpc5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512335712</pqid></control><display><type>article</type><title>A particle-image based wave profile measurement technique</title><source>SpringerLink Journals</source><creator>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</creator><creatorcontrib>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</creatorcontrib><description>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-006-0226-6</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Computer simulation ; Density ; Digital imagery ; Earth, ocean, space ; Errors ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Physics of the oceans ; Pixels ; Sea-air exchange processes ; Surface waves ; Thresholds</subject><ispartof>Experiments in fluids, 2007-01, Vol.42 (1), p.131-142</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</citedby><cites>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18405571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MUKTO, M. A</creatorcontrib><creatorcontrib>ATMANE, M. A</creatorcontrib><creatorcontrib>LOEWEN, M. R</creatorcontrib><title>A particle-image based wave profile measurement technique</title><title>Experiments in fluids</title><description>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Digital imagery</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Physics of the oceans</subject><subject>Pixels</subject><subject>Sea-air exchange processes</subject><subject>Surface waves</subject><subject>Thresholds</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwA7j1gsQlYNdJmh6niS9pEhc4R2nqQlHbjaQD8e_ptEkcudgX-7HfR4hLhBsEKG4TACkrAYyEPDfSHIkZKsolIqpjMYMiJ6msUafiLKUPANQl2JkoF9nGx7ENHcu292-cVT5xnX37L842cd20HWc9-7SN3PMwZiOH96H93PK5OGl8l_ji0Ofi9f7uZfkoV88PT8vFSgZSOEo04EmRrWtldYV1rU2BhSFbEbDVoa48lwq0t6pEq5qiKhtjS6BKeQWkaS6u99zpm-lsGl3fpsBd5wdeb5NDo_KcLBnz_6jGnEgXU50L3I-GuE4pcuM2ccoffxyC2xl1e6NuMup2Rt0Of3XA-xR810Q_hDb9LdopxgSnXxxpc5Q</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>MUKTO, M. A</creator><creator>ATMANE, M. A</creator><creator>LOEWEN, M. R</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070101</creationdate><title>A particle-image based wave profile measurement technique</title><author>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Digital imagery</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Physics of the oceans</topic><topic>Pixels</topic><topic>Sea-air exchange processes</topic><topic>Surface waves</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUKTO, M. A</creatorcontrib><creatorcontrib>ATMANE, M. A</creatorcontrib><creatorcontrib>LOEWEN, M. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUKTO, M. A</au><au>ATMANE, M. A</au><au>LOEWEN, M. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle-image based wave profile measurement technique</atitle><jtitle>Experiments in fluids</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>42</volume><issue>1</issue><spage>131</spage><epage>142</epage><pages>131-142</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00348-006-0226-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2007-01, Vol.42 (1), p.131-142
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_1642238366
source SpringerLink Journals
subjects Algorithms
Computer simulation
Density
Digital imagery
Earth, ocean, space
Errors
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Physics of the oceans
Pixels
Sea-air exchange processes
Surface waves
Thresholds
title A particle-image based wave profile measurement technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle-image%20based%20wave%20profile%20measurement%20technique&rft.jtitle=Experiments%20in%20fluids&rft.au=MUKTO,%20M.%20A&rft.date=2007-01-01&rft.volume=42&rft.issue=1&rft.spage=131&rft.epage=142&rft.pages=131-142&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-006-0226-6&rft_dat=%3Cproquest_cross%3E1512335712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512335712&rft_id=info:pmid/&rfr_iscdi=true