A particle-image based wave profile measurement technique
Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The techni...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2007-01, Vol.42 (1), p.131-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 131 |
container_title | Experiments in fluids |
container_volume | 42 |
creator | MUKTO, M. A ATMANE, M. A LOEWEN, M. R |
description | Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels. |
doi_str_mv | 10.1007/s00348-006-0226-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642238366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512335712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwA7j1gsQlYNdJmh6niS9pEhc4R2nqQlHbjaQD8e_ptEkcudgX-7HfR4hLhBsEKG4TACkrAYyEPDfSHIkZKsolIqpjMYMiJ6msUafiLKUPANQl2JkoF9nGx7ENHcu292-cVT5xnX37L842cd20HWc9-7SN3PMwZiOH96H93PK5OGl8l_ji0Ofi9f7uZfkoV88PT8vFSgZSOEo04EmRrWtldYV1rU2BhSFbEbDVoa48lwq0t6pEq5qiKhtjS6BKeQWkaS6u99zpm-lsGl3fpsBd5wdeb5NDo_KcLBnz_6jGnEgXU50L3I-GuE4pcuM2ccoffxyC2xl1e6NuMup2Rt0Of3XA-xR810Q_hDb9LdopxgSnXxxpc5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512335712</pqid></control><display><type>article</type><title>A particle-image based wave profile measurement technique</title><source>SpringerLink Journals</source><creator>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</creator><creatorcontrib>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</creatorcontrib><description>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-006-0226-6</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Computer simulation ; Density ; Digital imagery ; Earth, ocean, space ; Errors ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Physics of the oceans ; Pixels ; Sea-air exchange processes ; Surface waves ; Thresholds</subject><ispartof>Experiments in fluids, 2007-01, Vol.42 (1), p.131-142</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</citedby><cites>FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18405571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MUKTO, M. A</creatorcontrib><creatorcontrib>ATMANE, M. A</creatorcontrib><creatorcontrib>LOEWEN, M. R</creatorcontrib><title>A particle-image based wave profile measurement technique</title><title>Experiments in fluids</title><description>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Digital imagery</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Physics of the oceans</subject><subject>Pixels</subject><subject>Sea-air exchange processes</subject><subject>Surface waves</subject><subject>Thresholds</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwA7j1gsQlYNdJmh6niS9pEhc4R2nqQlHbjaQD8e_ptEkcudgX-7HfR4hLhBsEKG4TACkrAYyEPDfSHIkZKsolIqpjMYMiJ6msUafiLKUPANQl2JkoF9nGx7ENHcu292-cVT5xnX37L842cd20HWc9-7SN3PMwZiOH96H93PK5OGl8l_ji0Ofi9f7uZfkoV88PT8vFSgZSOEo04EmRrWtldYV1rU2BhSFbEbDVoa48lwq0t6pEq5qiKhtjS6BKeQWkaS6u99zpm-lsGl3fpsBd5wdeb5NDo_KcLBnz_6jGnEgXU50L3I-GuE4pcuM2ccoffxyC2xl1e6NuMup2Rt0Of3XA-xR810Q_hDb9LdopxgSnXxxpc5Q</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>MUKTO, M. A</creator><creator>ATMANE, M. A</creator><creator>LOEWEN, M. R</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070101</creationdate><title>A particle-image based wave profile measurement technique</title><author>MUKTO, M. A ; ATMANE, M. A ; LOEWEN, M. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-160a3438dd485b1dd56717638b30e85cdbae9405a849184f7b9f68903b4a40353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Digital imagery</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Physics of the oceans</topic><topic>Pixels</topic><topic>Sea-air exchange processes</topic><topic>Surface waves</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUKTO, M. A</creatorcontrib><creatorcontrib>ATMANE, M. A</creatorcontrib><creatorcontrib>LOEWEN, M. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUKTO, M. A</au><au>ATMANE, M. A</au><au>LOEWEN, M. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle-image based wave profile measurement technique</atitle><jtitle>Experiments in fluids</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>42</volume><issue>1</issue><spage>131</spage><epage>142</epage><pages>131-142</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Wave profile measurements are important for computing wave characteristics and for studying the aqueous boundary layer formed beneath surface waves. The measurement technique presented here made use of digital imagery and a detection algorithm referred to as the variable threshold method. The technique can measure wind generated waves as short as 10 pixels (1.44 mm) in wavelength. The average r.m.s. quantization error was found to be A-0.29 pixels (A-0.04 mm) using simulated wave profiles and the average bias error was estimated to be 0.07 pixels (0.01 mm) from real still water profiles. The magnitude of all other types of random errors was estimated to be approximately A-0.64 pixels (A-0.09 mm) using real wind wave profiles. A series of morphological operations, used to correct for non-uniform seed densities, improved the accuracy of the detected wave profiles by a factor of five. The variable threshold method detected real wind wave profiles 3.5 times more accurately than the standard constant threshold method and had total r.m.s. errors that ranged from A-0.7 (A-0.1 mm) to A-1.1 (A-0.16 mm) pixels.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00348-006-0226-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2007-01, Vol.42 (1), p.131-142 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642238366 |
source | SpringerLink Journals |
subjects | Algorithms Computer simulation Density Digital imagery Earth, ocean, space Errors Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Physics of the oceans Pixels Sea-air exchange processes Surface waves Thresholds |
title | A particle-image based wave profile measurement technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle-image%20based%20wave%20profile%20measurement%20technique&rft.jtitle=Experiments%20in%20fluids&rft.au=MUKTO,%20M.%20A&rft.date=2007-01-01&rft.volume=42&rft.issue=1&rft.spage=131&rft.epage=142&rft.pages=131-142&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-006-0226-6&rft_dat=%3Cproquest_cross%3E1512335712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512335712&rft_id=info:pmid/&rfr_iscdi=true |