Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering

Abstract The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-08, Vol.35 (26), p.7488-7500
Hauptverfasser: Shahbazi, Mohammad-Ali, Almeida, Patrick V, Mäkilä, Ermei M, Kaasalainen, Martti H, Salonen, Jarno J, Hirvonen, Jouni T, Santos, Hélder A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7500
container_issue 26
container_start_page 7488
container_title Biomaterials
container_volume 35
creator Shahbazi, Mohammad-Ali
Almeida, Patrick V
Mäkilä, Ermei M
Kaasalainen, Martti H
Salonen, Jarno J
Hirvonen, Jouni T
Santos, Hélder A
description Abstract The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.
doi_str_mv 10.1016/j.biomaterials.2014.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642230964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214005778</els_id><sourcerecordid>1642230964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-8e5af372b7b230c7afd50c79778db3454643a66bd384b9ee4aff6b20e3b755553</originalsourceid><addsrcrecordid>eNqNUk1v1TAQjBCIvhb-ArI4cUmwHTsfHJCqQgGpEgfgbNnO5smvjh3spOjxC_jZbPQKQlzAl5XlmVnPzhbFc0YrRlnz8lAZFye9QHLa54pTJioqK8rpg2LHurYrZU_lw2KHD7zsG8bPivOcDxTvVPDHxRkXPW1qIXbFj8t1P0FYYCAWvF-9TmRJehydvXVhT3QYCIQhZmzoCWSrZyBxJHNMcc0kO-9sDCToEGedFmc9ZHLnNPn-zS3bD2Nwlhjn9RESsvxxwprXNGoLqLx3ARAV9k-KRyO6gaf39aL4cv3289X78ubjuw9XlzellZQtZQdSj3XLTWt4TW2rx0Fi6du2G0wtpGhErZvGDHUnTA8g0EpjOIXatBJPfVG8OOnOKX5dIS9qcnmzrgOgI8UawVG5R51_Q3nbS856htBXJ6hNMecEo5qTm3Q6KkbVFpo6qD9DU1toikqFoSH52X2f1Uww_Kb-SgkBb04AwMHcOUgqWwfBwuAS2EUN0f1fn9d_yVjvMB7tb-EI-RDXFDYOU5krqj5t67NtD24NlTjg-iepcMe6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627952191</pqid></control><display><type>article</type><title>Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shahbazi, Mohammad-Ali ; Almeida, Patrick V ; Mäkilä, Ermei M ; Kaasalainen, Martti H ; Salonen, Jarno J ; Hirvonen, Jouni T ; Santos, Hélder A</creator><creatorcontrib>Shahbazi, Mohammad-Ali ; Almeida, Patrick V ; Mäkilä, Ermei M ; Kaasalainen, Martti H ; Salonen, Jarno J ; Hirvonen, Jouni T ; Santos, Hélder A</creatorcontrib><description>Abstract The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.05.020</identifier><identifier>PMID: 24906344</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Antimetabolites, Antineoplastic - administration &amp; dosage ; Antimetabolites, Antineoplastic - pharmacology ; Biocompatibility ; Breast Neoplasms - drug therapy ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cellular ; Cellular uptake ; Charge ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - metabolism ; Dentistry ; Drug delivery systems ; Endosomal escape ; Endosomes - metabolism ; Female ; Humans ; Ions - chemistry ; Ions - metabolism ; Maleates - chemistry ; Maleates - metabolism ; MCF-7 Cells ; Methotrexate - administration &amp; dosage ; Methotrexate - pharmacology ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanoparticles - ultrastructure ; Nanostructure ; Poly(methyl vinyl ether-co-maleic acid) ; Polyetherimides ; Polyethyleneimine ; Polyethyleneimine - chemistry ; Polyethyleneimine - metabolism ; Polyethylenes - chemistry ; Polyethylenes - metabolism ; Polymers ; Porosity ; Porous silicon ; Porous silicon nanoparticles ; Silicon ; Surface functionalization ; Surface Properties ; Toxicity</subject><ispartof>Biomaterials, 2014-08, Vol.35 (26), p.7488-7500</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-8e5af372b7b230c7afd50c79778db3454643a66bd384b9ee4aff6b20e3b755553</citedby><cites>FETCH-LOGICAL-c501t-8e5af372b7b230c7afd50c79778db3454643a66bd384b9ee4aff6b20e3b755553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.05.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24906344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahbazi, Mohammad-Ali</creatorcontrib><creatorcontrib>Almeida, Patrick V</creatorcontrib><creatorcontrib>Mäkilä, Ermei M</creatorcontrib><creatorcontrib>Kaasalainen, Martti H</creatorcontrib><creatorcontrib>Salonen, Jarno J</creatorcontrib><creatorcontrib>Hirvonen, Jouni T</creatorcontrib><creatorcontrib>Santos, Hélder A</creatorcontrib><title>Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.</description><subject>Advanced Basic Science</subject><subject>Antimetabolites, Antineoplastic - administration &amp; dosage</subject><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Biocompatibility</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cellular</subject><subject>Cellular uptake</subject><subject>Charge</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - metabolism</subject><subject>Dentistry</subject><subject>Drug delivery systems</subject><subject>Endosomal escape</subject><subject>Endosomes - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Ions - chemistry</subject><subject>Ions - metabolism</subject><subject>Maleates - chemistry</subject><subject>Maleates - metabolism</subject><subject>MCF-7 Cells</subject><subject>Methotrexate - administration &amp; dosage</subject><subject>Methotrexate - pharmacology</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Poly(methyl vinyl ether-co-maleic acid)</subject><subject>Polyetherimides</subject><subject>Polyethyleneimine</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polyethyleneimine - metabolism</subject><subject>Polyethylenes - chemistry</subject><subject>Polyethylenes - metabolism</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Porous silicon nanoparticles</subject><subject>Silicon</subject><subject>Surface functionalization</subject><subject>Surface Properties</subject><subject>Toxicity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1TAQjBCIvhb-ArI4cUmwHTsfHJCqQgGpEgfgbNnO5smvjh3spOjxC_jZbPQKQlzAl5XlmVnPzhbFc0YrRlnz8lAZFye9QHLa54pTJioqK8rpg2LHurYrZU_lw2KHD7zsG8bPivOcDxTvVPDHxRkXPW1qIXbFj8t1P0FYYCAWvF-9TmRJehydvXVhT3QYCIQhZmzoCWSrZyBxJHNMcc0kO-9sDCToEGedFmc9ZHLnNPn-zS3bD2Nwlhjn9RESsvxxwprXNGoLqLx3ARAV9k-KRyO6gaf39aL4cv3289X78ubjuw9XlzellZQtZQdSj3XLTWt4TW2rx0Fi6du2G0wtpGhErZvGDHUnTA8g0EpjOIXatBJPfVG8OOnOKX5dIS9qcnmzrgOgI8UawVG5R51_Q3nbS856htBXJ6hNMecEo5qTm3Q6KkbVFpo6qD9DU1toikqFoSH52X2f1Uww_Kb-SgkBb04AwMHcOUgqWwfBwuAS2EUN0f1fn9d_yVjvMB7tb-EI-RDXFDYOU5krqj5t67NtD24NlTjg-iepcMe6</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Shahbazi, Mohammad-Ali</creator><creator>Almeida, Patrick V</creator><creator>Mäkilä, Ermei M</creator><creator>Kaasalainen, Martti H</creator><creator>Salonen, Jarno J</creator><creator>Hirvonen, Jouni T</creator><creator>Santos, Hélder A</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering</title><author>Shahbazi, Mohammad-Ali ; Almeida, Patrick V ; Mäkilä, Ermei M ; Kaasalainen, Martti H ; Salonen, Jarno J ; Hirvonen, Jouni T ; Santos, Hélder A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-8e5af372b7b230c7afd50c79778db3454643a66bd384b9ee4aff6b20e3b755553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Antimetabolites, Antineoplastic - administration &amp; dosage</topic><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Biocompatibility</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cellular</topic><topic>Cellular uptake</topic><topic>Charge</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - metabolism</topic><topic>Dentistry</topic><topic>Drug delivery systems</topic><topic>Endosomal escape</topic><topic>Endosomes - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Ions - chemistry</topic><topic>Ions - metabolism</topic><topic>Maleates - chemistry</topic><topic>Maleates - metabolism</topic><topic>MCF-7 Cells</topic><topic>Methotrexate - administration &amp; dosage</topic><topic>Methotrexate - pharmacology</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Poly(methyl vinyl ether-co-maleic acid)</topic><topic>Polyetherimides</topic><topic>Polyethyleneimine</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polyethyleneimine - metabolism</topic><topic>Polyethylenes - chemistry</topic><topic>Polyethylenes - metabolism</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Porous silicon nanoparticles</topic><topic>Silicon</topic><topic>Surface functionalization</topic><topic>Surface Properties</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbazi, Mohammad-Ali</creatorcontrib><creatorcontrib>Almeida, Patrick V</creatorcontrib><creatorcontrib>Mäkilä, Ermei M</creatorcontrib><creatorcontrib>Kaasalainen, Martti H</creatorcontrib><creatorcontrib>Salonen, Jarno J</creatorcontrib><creatorcontrib>Hirvonen, Jouni T</creatorcontrib><creatorcontrib>Santos, Hélder A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazi, Mohammad-Ali</au><au>Almeida, Patrick V</au><au>Mäkilä, Ermei M</au><au>Kaasalainen, Martti H</au><au>Salonen, Jarno J</au><au>Hirvonen, Jouni T</au><au>Santos, Hélder A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>35</volume><issue>26</issue><spage>7488</spage><epage>7500</epage><pages>7488-7500</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24906344</pmid><doi>10.1016/j.biomaterials.2014.05.020</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-08, Vol.35 (26), p.7488-7500
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1642230964
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Antimetabolites, Antineoplastic - administration & dosage
Antimetabolites, Antineoplastic - pharmacology
Biocompatibility
Breast Neoplasms - drug therapy
Cell Line, Tumor
Cell Proliferation - drug effects
Cellular
Cellular uptake
Charge
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - metabolism
Dentistry
Drug delivery systems
Endosomal escape
Endosomes - metabolism
Female
Humans
Ions - chemistry
Ions - metabolism
Maleates - chemistry
Maleates - metabolism
MCF-7 Cells
Methotrexate - administration & dosage
Methotrexate - pharmacology
Nanoparticles - chemistry
Nanoparticles - metabolism
Nanoparticles - ultrastructure
Nanostructure
Poly(methyl vinyl ether-co-maleic acid)
Polyetherimides
Polyethyleneimine
Polyethyleneimine - chemistry
Polyethyleneimine - metabolism
Polyethylenes - chemistry
Polyethylenes - metabolism
Polymers
Porosity
Porous silicon
Porous silicon nanoparticles
Silicon
Surface functionalization
Surface Properties
Toxicity
title Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T13%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20cellular%20trafficking%20and%20endosomal%20escape%20of%20porous%20silicon%20nanoparticles%20via%20zwitterionic%20bilayer%20polymer%20surface%20engineering&rft.jtitle=Biomaterials&rft.au=Shahbazi,%20Mohammad-Ali&rft.date=2014-08-01&rft.volume=35&rft.issue=26&rft.spage=7488&rft.epage=7500&rft.pages=7488-7500&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.05.020&rft_dat=%3Cproquest_cross%3E1642230964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627952191&rft_id=info:pmid/24906344&rft_els_id=1_s2_0_S0142961214005778&rfr_iscdi=true