A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction
In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The r...
Gespeichert in:
Veröffentlicht in: | Materials and corrosion 2014-11, Vol.65 (11), p.1120-1127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 11 |
container_start_page | 1120 |
container_title | Materials and corrosion |
container_volume | 65 |
creator | Zhu, X. L. Zhu, L. X. Lu, X. F. Ling, X. |
description | In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results. |
doi_str_mv | 10.1002/maco.201307052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642228284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642228284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</originalsourceid><addsrcrecordid>eNqFkE1v1DAURS0EUofCtmtLCIlNpv5OshwN0FYtFESrLo1jvwiXJC62Q-m_r6OpRogNK-tZ5x4_X4SOKFlTQtjxaGxYM0I5qYlkz9CKSkYrQWv1HK1IK-pKUlofoJcp3RJCacvFCn3f4Cn8hgGPkH8Eh3PADjLE0U-A-yHcV8ZaGCCaDA7bEGNIPkx4mXFnUrksUz_M3uGU42zzHAH7qSiMzYV8hV70Zkjw-uk8RNcfP1xtT6uLy5Oz7eaiskI2rLKdZFYCccZKBW2rhHXcdYpZxV1d045Iypmwfd-SjhGmhGqEFIIppfqucfwQvdt572L4NUPKevSpbD6YCcKcNFWCMdawRhT0zT_obZjjVLYrFG1ayiRZqPWOsuXLKUKv76IfTXzQlOilcL0UrveFl8DbJ61J1gx9NJP1aZ9ii5jKpnDtjrv3Azz8x6o_bbaXf79R7bI-Zfizz5r4U6ua11LffD7RXCjy9dv5F_2ePwLl56BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618912504</pqid></control><display><type>article</type><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</creator><creatorcontrib>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</creatorcontrib><description>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.201307052</identifier><identifier>CODEN: MTCREQ</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Corrosion ; Corrosion environments ; corrosion product film ; Exact sciences and technology ; flow structure interaction ; flow-accelerated corrosion ; Fluid flow ; Fluids ; Mathematical models ; Metals. Metallurgy ; Porosity ; prediction model ; Stresses</subject><ispartof>Materials and corrosion, 2014-11, Vol.65 (11), p.1120-1127</ispartof><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</citedby><cites>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.201307052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.201307052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28912158$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, X. L.</creatorcontrib><creatorcontrib>Zhu, L. X.</creatorcontrib><creatorcontrib>Lu, X. F.</creatorcontrib><creatorcontrib>Ling, X.</creatorcontrib><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><title>Materials and corrosion</title><addtitle>Materials and Corrosion</addtitle><description>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>corrosion product film</subject><subject>Exact sciences and technology</subject><subject>flow structure interaction</subject><subject>flow-accelerated corrosion</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Porosity</subject><subject>prediction model</subject><subject>Stresses</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAURS0EUofCtmtLCIlNpv5OshwN0FYtFESrLo1jvwiXJC62Q-m_r6OpRogNK-tZ5x4_X4SOKFlTQtjxaGxYM0I5qYlkz9CKSkYrQWv1HK1IK-pKUlofoJcp3RJCacvFCn3f4Cn8hgGPkH8Eh3PADjLE0U-A-yHcV8ZaGCCaDA7bEGNIPkx4mXFnUrksUz_M3uGU42zzHAH7qSiMzYV8hV70Zkjw-uk8RNcfP1xtT6uLy5Oz7eaiskI2rLKdZFYCccZKBW2rhHXcdYpZxV1d045Iypmwfd-SjhGmhGqEFIIppfqucfwQvdt572L4NUPKevSpbD6YCcKcNFWCMdawRhT0zT_obZjjVLYrFG1ayiRZqPWOsuXLKUKv76IfTXzQlOilcL0UrveFl8DbJ61J1gx9NJP1aZ9ii5jKpnDtjrv3Azz8x6o_bbaXf79R7bI-Zfizz5r4U6ua11LffD7RXCjy9dv5F_2ePwLl56BA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zhu, X. L.</creator><creator>Zhu, L. X.</creator><creator>Lu, X. F.</creator><creator>Ling, X.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-VCH</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201411</creationdate><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><author>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>corrosion product film</topic><topic>Exact sciences and technology</topic><topic>flow structure interaction</topic><topic>flow-accelerated corrosion</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Porosity</topic><topic>prediction model</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, X. L.</creatorcontrib><creatorcontrib>Zhu, L. X.</creatorcontrib><creatorcontrib>Lu, X. F.</creatorcontrib><creatorcontrib>Ling, X.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, X. L.</au><au>Zhu, L. X.</au><au>Lu, X. F.</au><au>Ling, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</atitle><jtitle>Materials and corrosion</jtitle><addtitle>Materials and Corrosion</addtitle><date>2014-11</date><risdate>2014</risdate><volume>65</volume><issue>11</issue><spage>1120</spage><epage>1127</epage><pages>1120-1127</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><coden>MTCREQ</coden><abstract>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/maco.201307052</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-5117 |
ispartof | Materials and corrosion, 2014-11, Vol.65 (11), p.1120-1127 |
issn | 0947-5117 1521-4176 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642228284 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Computational fluid dynamics Corrosion Corrosion environments corrosion product film Exact sciences and technology flow structure interaction flow-accelerated corrosion Fluid flow Fluids Mathematical models Metals. Metallurgy Porosity prediction model Stresses |
title | A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20determine%20flow-accelerated%20corrosion%20rate%20based%20on%20fluid%20structure%20interaction&rft.jtitle=Materials%20and%20corrosion&rft.au=Zhu,%20X.%20L.&rft.date=2014-11&rft.volume=65&rft.issue=11&rft.spage=1120&rft.epage=1127&rft.pages=1120-1127&rft.issn=0947-5117&rft.eissn=1521-4176&rft.coden=MTCREQ&rft_id=info:doi/10.1002/maco.201307052&rft_dat=%3Cproquest_cross%3E1642228284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618912504&rft_id=info:pmid/&rfr_iscdi=true |