A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction

In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and corrosion 2014-11, Vol.65 (11), p.1120-1127
Hauptverfasser: Zhu, X. L., Zhu, L. X., Lu, X. F., Ling, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1127
container_issue 11
container_start_page 1120
container_title Materials and corrosion
container_volume 65
creator Zhu, X. L.
Zhu, L. X.
Lu, X. F.
Ling, X.
description In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.
doi_str_mv 10.1002/maco.201307052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642228284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642228284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</originalsourceid><addsrcrecordid>eNqFkE1v1DAURS0EUofCtmtLCIlNpv5OshwN0FYtFESrLo1jvwiXJC62Q-m_r6OpRogNK-tZ5x4_X4SOKFlTQtjxaGxYM0I5qYlkz9CKSkYrQWv1HK1IK-pKUlofoJcp3RJCacvFCn3f4Cn8hgGPkH8Eh3PADjLE0U-A-yHcV8ZaGCCaDA7bEGNIPkx4mXFnUrksUz_M3uGU42zzHAH7qSiMzYV8hV70Zkjw-uk8RNcfP1xtT6uLy5Oz7eaiskI2rLKdZFYCccZKBW2rhHXcdYpZxV1d045Iypmwfd-SjhGmhGqEFIIppfqucfwQvdt572L4NUPKevSpbD6YCcKcNFWCMdawRhT0zT_obZjjVLYrFG1ayiRZqPWOsuXLKUKv76IfTXzQlOilcL0UrveFl8DbJ61J1gx9NJP1aZ9ii5jKpnDtjrv3Azz8x6o_bbaXf79R7bI-Zfizz5r4U6ua11LffD7RXCjy9dv5F_2ePwLl56BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618912504</pqid></control><display><type>article</type><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</creator><creatorcontrib>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</creatorcontrib><description>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.201307052</identifier><identifier>CODEN: MTCREQ</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Corrosion ; Corrosion environments ; corrosion product film ; Exact sciences and technology ; flow structure interaction ; flow-accelerated corrosion ; Fluid flow ; Fluids ; Mathematical models ; Metals. Metallurgy ; Porosity ; prediction model ; Stresses</subject><ispartof>Materials and corrosion, 2014-11, Vol.65 (11), p.1120-1127</ispartof><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</citedby><cites>FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.201307052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.201307052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28912158$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, X. L.</creatorcontrib><creatorcontrib>Zhu, L. X.</creatorcontrib><creatorcontrib>Lu, X. F.</creatorcontrib><creatorcontrib>Ling, X.</creatorcontrib><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><title>Materials and corrosion</title><addtitle>Materials and Corrosion</addtitle><description>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>corrosion product film</subject><subject>Exact sciences and technology</subject><subject>flow structure interaction</subject><subject>flow-accelerated corrosion</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Porosity</subject><subject>prediction model</subject><subject>Stresses</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAURS0EUofCtmtLCIlNpv5OshwN0FYtFESrLo1jvwiXJC62Q-m_r6OpRogNK-tZ5x4_X4SOKFlTQtjxaGxYM0I5qYlkz9CKSkYrQWv1HK1IK-pKUlofoJcp3RJCacvFCn3f4Cn8hgGPkH8Eh3PADjLE0U-A-yHcV8ZaGCCaDA7bEGNIPkx4mXFnUrksUz_M3uGU42zzHAH7qSiMzYV8hV70Zkjw-uk8RNcfP1xtT6uLy5Oz7eaiskI2rLKdZFYCccZKBW2rhHXcdYpZxV1d045Iypmwfd-SjhGmhGqEFIIppfqucfwQvdt572L4NUPKevSpbD6YCcKcNFWCMdawRhT0zT_obZjjVLYrFG1ayiRZqPWOsuXLKUKv76IfTXzQlOilcL0UrveFl8DbJ61J1gx9NJP1aZ9ii5jKpnDtjrv3Azz8x6o_bbaXf79R7bI-Zfizz5r4U6ua11LffD7RXCjy9dv5F_2ePwLl56BA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zhu, X. L.</creator><creator>Zhu, L. X.</creator><creator>Lu, X. F.</creator><creator>Ling, X.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-VCH</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201411</creationdate><title>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</title><author>Zhu, X. L. ; Zhu, L. X. ; Lu, X. F. ; Ling, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4582-cb52c5e0dac56e9964cd3db62c63d771b051324cff90b202646845442666fb8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>corrosion product film</topic><topic>Exact sciences and technology</topic><topic>flow structure interaction</topic><topic>flow-accelerated corrosion</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Porosity</topic><topic>prediction model</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, X. L.</creatorcontrib><creatorcontrib>Zhu, L. X.</creatorcontrib><creatorcontrib>Lu, X. F.</creatorcontrib><creatorcontrib>Ling, X.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, X. L.</au><au>Zhu, L. X.</au><au>Lu, X. F.</au><au>Ling, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction</atitle><jtitle>Materials and corrosion</jtitle><addtitle>Materials and Corrosion</addtitle><date>2014-11</date><risdate>2014</risdate><volume>65</volume><issue>11</issue><spage>1120</spage><epage>1127</epage><pages>1120-1127</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><coden>MTCREQ</coden><abstract>In this paper, the mechanism of flow‐accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/maco.201307052</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2014-11, Vol.65 (11), p.1120-1127
issn 0947-5117
1521-4176
language eng
recordid cdi_proquest_miscellaneous_1642228284
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Computational fluid dynamics
Corrosion
Corrosion environments
corrosion product film
Exact sciences and technology
flow structure interaction
flow-accelerated corrosion
Fluid flow
Fluids
Mathematical models
Metals. Metallurgy
Porosity
prediction model
Stresses
title A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20determine%20flow-accelerated%20corrosion%20rate%20based%20on%20fluid%20structure%20interaction&rft.jtitle=Materials%20and%20corrosion&rft.au=Zhu,%20X.%20L.&rft.date=2014-11&rft.volume=65&rft.issue=11&rft.spage=1120&rft.epage=1127&rft.pages=1120-1127&rft.issn=0947-5117&rft.eissn=1521-4176&rft.coden=MTCREQ&rft_id=info:doi/10.1002/maco.201307052&rft_dat=%3Cproquest_cross%3E1642228284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618912504&rft_id=info:pmid/&rfr_iscdi=true