Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring
Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, A...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2014-10, Vol.41 (19), p.6779-6786 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6786 |
---|---|
container_issue | 19 |
container_start_page | 6779 |
container_title | Geophysical research letters |
container_volume | 41 |
creator | Kobs, Scott Holland, David M. Zagorodnov, Victor Stern, Alon Tyler, Scott W. |
description | Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions.
Key Points
Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings |
doi_str_mv | 10.1002/2014GL061155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642227747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910955342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</originalsourceid><addsrcrecordid>eNqN0U1rFDEYAOAgCq5bb_6AAS8eHM13Msey2FVZtrC09Bgyk3c0dWayTTJq_72Zroh4KEJIcnjej-RF6BXB7wjG9D3FhG93WBIixBO0Ig3ntcZYPUUrjJtyp0o-Ry9SusUYM8zICt3tw3cYqjFMPofopy9V6KvzKdvYZd9VvoMqfYWhr1qbbHEw5AXNadlt1fsWYh2Oi3U-5ejbOYOrMoxHiDbPscTD9KDH8FDgDD3r7ZDg5e9zja4vPlxtPta7y-2nzfmutrxpaA2CtJ1SgkPfKaeZ44pTZhuhtHQtyBYD1Y4ISjV1kjusXI-pZgBdWRLYGr055T3GcDdDymb0qYNhsBOEORkiOaVUKa7-g1LVaC7Ll63R63_obZjjVB5iSENwIwQrbT6mtKSEMC2WXG9PqoshpQi9OUY_2nhvCDbLQM3fAy2cnvgPP8D9o9ZsDztBCV06qU9BZTjw80-Qjd-MVEwJc7PfGn3gcn-z-WwO7BdSQq_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862113850</pqid></control><display><type>article</type><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</creator><creatorcontrib>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</creatorcontrib><description>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions.
Key Points
Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL061155</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Antarctic ; Antarctic ice ; Antarctica ; basal melting ; Cables ; Climate ; Climate change ; Continuous fibers ; Deep sea moorings ; Detection ; distributed temperature sensing ; Extrapolation ; Fiber optics ; Freezing ; glaciology ; Ice ; Ice shelves ; Interactions ; Land ice ; Marine ; Mathematical analysis ; Melting ; Monitoring ; Mooring ; Mooring systems ; Ocean temperature ; Optical fibers ; Sea level ; Shelves ; Spatial discrimination ; Spatial resolution ; Stability ; Surface water ; Temperature ; Temperature effects ; Tracking</subject><ispartof>Geophysical research letters, 2014-10, Vol.41 (19), p.6779-6786</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</citedby><cites>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL061155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL061155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Kobs, Scott</creatorcontrib><creatorcontrib>Holland, David M.</creatorcontrib><creatorcontrib>Zagorodnov, Victor</creatorcontrib><creatorcontrib>Stern, Alon</creatorcontrib><creatorcontrib>Tyler, Scott W.</creatorcontrib><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions.
Key Points
Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</description><subject>Antarctic</subject><subject>Antarctic ice</subject><subject>Antarctica</subject><subject>basal melting</subject><subject>Cables</subject><subject>Climate</subject><subject>Climate change</subject><subject>Continuous fibers</subject><subject>Deep sea moorings</subject><subject>Detection</subject><subject>distributed temperature sensing</subject><subject>Extrapolation</subject><subject>Fiber optics</subject><subject>Freezing</subject><subject>glaciology</subject><subject>Ice</subject><subject>Ice shelves</subject><subject>Interactions</subject><subject>Land ice</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Melting</subject><subject>Monitoring</subject><subject>Mooring</subject><subject>Mooring systems</subject><subject>Ocean temperature</subject><subject>Optical fibers</subject><subject>Sea level</subject><subject>Shelves</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stability</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Tracking</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rFDEYAOAgCq5bb_6AAS8eHM13Msey2FVZtrC09Bgyk3c0dWayTTJq_72Zroh4KEJIcnjej-RF6BXB7wjG9D3FhG93WBIixBO0Ig3ntcZYPUUrjJtyp0o-Ry9SusUYM8zICt3tw3cYqjFMPofopy9V6KvzKdvYZd9VvoMqfYWhr1qbbHEw5AXNadlt1fsWYh2Oi3U-5ejbOYOrMoxHiDbPscTD9KDH8FDgDD3r7ZDg5e9zja4vPlxtPta7y-2nzfmutrxpaA2CtJ1SgkPfKaeZ44pTZhuhtHQtyBYD1Y4ISjV1kjusXI-pZgBdWRLYGr055T3GcDdDymb0qYNhsBOEORkiOaVUKa7-g1LVaC7Ll63R63_obZjjVB5iSENwIwQrbT6mtKSEMC2WXG9PqoshpQi9OUY_2nhvCDbLQM3fAy2cnvgPP8D9o9ZsDztBCV06qU9BZTjw80-Qjd-MVEwJc7PfGn3gcn-z-WwO7BdSQq_n</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Kobs, Scott</creator><creator>Holland, David M.</creator><creator>Zagorodnov, Victor</creator><creator>Stern, Alon</creator><creator>Tyler, Scott W.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>7SP</scope></search><sort><creationdate>20141016</creationdate><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><author>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antarctic</topic><topic>Antarctic ice</topic><topic>Antarctica</topic><topic>basal melting</topic><topic>Cables</topic><topic>Climate</topic><topic>Climate change</topic><topic>Continuous fibers</topic><topic>Deep sea moorings</topic><topic>Detection</topic><topic>distributed temperature sensing</topic><topic>Extrapolation</topic><topic>Fiber optics</topic><topic>Freezing</topic><topic>glaciology</topic><topic>Ice</topic><topic>Ice shelves</topic><topic>Interactions</topic><topic>Land ice</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Melting</topic><topic>Monitoring</topic><topic>Mooring</topic><topic>Mooring systems</topic><topic>Ocean temperature</topic><topic>Optical fibers</topic><topic>Sea level</topic><topic>Shelves</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stability</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobs, Scott</creatorcontrib><creatorcontrib>Holland, David M.</creatorcontrib><creatorcontrib>Zagorodnov, Victor</creatorcontrib><creatorcontrib>Stern, Alon</creatorcontrib><creatorcontrib>Tyler, Scott W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobs, Scott</au><au>Holland, David M.</au><au>Zagorodnov, Victor</au><au>Stern, Alon</au><au>Tyler, Scott W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>41</volume><issue>19</issue><spage>6779</spage><epage>6786</epage><pages>6779-6786</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions.
Key Points
Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL061155</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2014-10, Vol.41 (19), p.6779-6786 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642227747 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Antarctic Antarctic ice Antarctica basal melting Cables Climate Climate change Continuous fibers Deep sea moorings Detection distributed temperature sensing Extrapolation Fiber optics Freezing glaciology Ice Ice shelves Interactions Land ice Marine Mathematical analysis Melting Monitoring Mooring Mooring systems Ocean temperature Optical fibers Sea level Shelves Spatial discrimination Spatial resolution Stability Surface water Temperature Temperature effects Tracking |
title | Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20monitoring%20of%20Antarctic%20ice%20shelf%20basal%20melting%20using%20a%20fiber-optic%20distributed%20temperature%20sensing%20mooring&rft.jtitle=Geophysical%20research%20letters&rft.au=Kobs,%20Scott&rft.date=2014-10-16&rft.volume=41&rft.issue=19&rft.spage=6779&rft.epage=6786&rft.pages=6779-6786&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL061155&rft_dat=%3Cproquest_cross%3E1910955342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862113850&rft_id=info:pmid/&rfr_iscdi=true |