Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring

Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2014-10, Vol.41 (19), p.6779-6786
Hauptverfasser: Kobs, Scott, Holland, David M., Zagorodnov, Victor, Stern, Alon, Tyler, Scott W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6786
container_issue 19
container_start_page 6779
container_title Geophysical research letters
container_volume 41
creator Kobs, Scott
Holland, David M.
Zagorodnov, Victor
Stern, Alon
Tyler, Scott W.
description Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions. Key Points Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings
doi_str_mv 10.1002/2014GL061155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642227747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910955342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</originalsourceid><addsrcrecordid>eNqN0U1rFDEYAOAgCq5bb_6AAS8eHM13Msey2FVZtrC09Bgyk3c0dWayTTJq_72Zroh4KEJIcnjej-RF6BXB7wjG9D3FhG93WBIixBO0Ig3ntcZYPUUrjJtyp0o-Ry9SusUYM8zICt3tw3cYqjFMPofopy9V6KvzKdvYZd9VvoMqfYWhr1qbbHEw5AXNadlt1fsWYh2Oi3U-5ejbOYOrMoxHiDbPscTD9KDH8FDgDD3r7ZDg5e9zja4vPlxtPta7y-2nzfmutrxpaA2CtJ1SgkPfKaeZ44pTZhuhtHQtyBYD1Y4ISjV1kjusXI-pZgBdWRLYGr055T3GcDdDymb0qYNhsBOEORkiOaVUKa7-g1LVaC7Ll63R63_obZjjVB5iSENwIwQrbT6mtKSEMC2WXG9PqoshpQi9OUY_2nhvCDbLQM3fAy2cnvgPP8D9o9ZsDztBCV06qU9BZTjw80-Qjd-MVEwJc7PfGn3gcn-z-WwO7BdSQq_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862113850</pqid></control><display><type>article</type><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</creator><creatorcontrib>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</creatorcontrib><description>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions. Key Points Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL061155</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Antarctic ; Antarctic ice ; Antarctica ; basal melting ; Cables ; Climate ; Climate change ; Continuous fibers ; Deep sea moorings ; Detection ; distributed temperature sensing ; Extrapolation ; Fiber optics ; Freezing ; glaciology ; Ice ; Ice shelves ; Interactions ; Land ice ; Marine ; Mathematical analysis ; Melting ; Monitoring ; Mooring ; Mooring systems ; Ocean temperature ; Optical fibers ; Sea level ; Shelves ; Spatial discrimination ; Spatial resolution ; Stability ; Surface water ; Temperature ; Temperature effects ; Tracking</subject><ispartof>Geophysical research letters, 2014-10, Vol.41 (19), p.6779-6786</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</citedby><cites>FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL061155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL061155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Kobs, Scott</creatorcontrib><creatorcontrib>Holland, David M.</creatorcontrib><creatorcontrib>Zagorodnov, Victor</creatorcontrib><creatorcontrib>Stern, Alon</creatorcontrib><creatorcontrib>Tyler, Scott W.</creatorcontrib><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions. Key Points Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</description><subject>Antarctic</subject><subject>Antarctic ice</subject><subject>Antarctica</subject><subject>basal melting</subject><subject>Cables</subject><subject>Climate</subject><subject>Climate change</subject><subject>Continuous fibers</subject><subject>Deep sea moorings</subject><subject>Detection</subject><subject>distributed temperature sensing</subject><subject>Extrapolation</subject><subject>Fiber optics</subject><subject>Freezing</subject><subject>glaciology</subject><subject>Ice</subject><subject>Ice shelves</subject><subject>Interactions</subject><subject>Land ice</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Melting</subject><subject>Monitoring</subject><subject>Mooring</subject><subject>Mooring systems</subject><subject>Ocean temperature</subject><subject>Optical fibers</subject><subject>Sea level</subject><subject>Shelves</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stability</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Tracking</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rFDEYAOAgCq5bb_6AAS8eHM13Msey2FVZtrC09Bgyk3c0dWayTTJq_72Zroh4KEJIcnjej-RF6BXB7wjG9D3FhG93WBIixBO0Ig3ntcZYPUUrjJtyp0o-Ry9SusUYM8zICt3tw3cYqjFMPofopy9V6KvzKdvYZd9VvoMqfYWhr1qbbHEw5AXNadlt1fsWYh2Oi3U-5ejbOYOrMoxHiDbPscTD9KDH8FDgDD3r7ZDg5e9zja4vPlxtPta7y-2nzfmutrxpaA2CtJ1SgkPfKaeZ44pTZhuhtHQtyBYD1Y4ISjV1kjusXI-pZgBdWRLYGr055T3GcDdDymb0qYNhsBOEORkiOaVUKa7-g1LVaC7Ll63R63_obZjjVB5iSENwIwQrbT6mtKSEMC2WXG9PqoshpQi9OUY_2nhvCDbLQM3fAy2cnvgPP8D9o9ZsDztBCV06qU9BZTjw80-Qjd-MVEwJc7PfGn3gcn-z-WwO7BdSQq_n</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Kobs, Scott</creator><creator>Holland, David M.</creator><creator>Zagorodnov, Victor</creator><creator>Stern, Alon</creator><creator>Tyler, Scott W.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>7SP</scope></search><sort><creationdate>20141016</creationdate><title>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</title><author>Kobs, Scott ; Holland, David M. ; Zagorodnov, Victor ; Stern, Alon ; Tyler, Scott W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4992-e51bc7754efc7d83d47423a95786dbe6b0e28d152282d64d07df0283eeceec6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antarctic</topic><topic>Antarctic ice</topic><topic>Antarctica</topic><topic>basal melting</topic><topic>Cables</topic><topic>Climate</topic><topic>Climate change</topic><topic>Continuous fibers</topic><topic>Deep sea moorings</topic><topic>Detection</topic><topic>distributed temperature sensing</topic><topic>Extrapolation</topic><topic>Fiber optics</topic><topic>Freezing</topic><topic>glaciology</topic><topic>Ice</topic><topic>Ice shelves</topic><topic>Interactions</topic><topic>Land ice</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Melting</topic><topic>Monitoring</topic><topic>Mooring</topic><topic>Mooring systems</topic><topic>Ocean temperature</topic><topic>Optical fibers</topic><topic>Sea level</topic><topic>Shelves</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stability</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobs, Scott</creatorcontrib><creatorcontrib>Holland, David M.</creatorcontrib><creatorcontrib>Zagorodnov, Victor</creatorcontrib><creatorcontrib>Stern, Alon</creatorcontrib><creatorcontrib>Tyler, Scott W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobs, Scott</au><au>Holland, David M.</au><au>Zagorodnov, Victor</au><au>Stern, Alon</au><au>Tyler, Scott W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>41</volume><issue>19</issue><spage>6779</spage><epage>6786</epage><pages>6779-6786</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Measuring basal melting of ice shelves is challenging and represents a critical component toward understanding ocean‐ice interactions and climate change. In November 2011, moorings containing fiber‐optic cables for distributed temperature sensing (DTS) were installed through the McMurdo Ice Shelf, Antarctica, (~200 m) and extending ~600 m into the ice shelf cavity. The high spatial resolution of DTS allows for transient monitoring of the thermal gradient within the ice shelf. The gradient near the ice‐ocean interface is extrapolated to the in situ freezing temperature in order to continuously track the ice‐ocean interface. Seasonal melt rates are calculated to be ~1.0 mm d−1 and 8.6 mm d−1, and maximum melting corresponds to the arrival of seasonal warm surface water in the ice shelf cavity between January and April. The development of continuous, surface‐based techniques for measuring basal melting represents a significant advance in monitoring ice shelf stability and ice‐ocean interactions. Key Points Antarctic fiber‐optic moorings for distributed temperature sensingObservations of basal melting at the ice‐ocean interfaceMeasurement of seasonal basal melting from distributed temperature sensing moorings</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL061155</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2014-10, Vol.41 (19), p.6779-6786
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1642227747
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Antarctic
Antarctic ice
Antarctica
basal melting
Cables
Climate
Climate change
Continuous fibers
Deep sea moorings
Detection
distributed temperature sensing
Extrapolation
Fiber optics
Freezing
glaciology
Ice
Ice shelves
Interactions
Land ice
Marine
Mathematical analysis
Melting
Monitoring
Mooring
Mooring systems
Ocean temperature
Optical fibers
Sea level
Shelves
Spatial discrimination
Spatial resolution
Stability
Surface water
Temperature
Temperature effects
Tracking
title Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20monitoring%20of%20Antarctic%20ice%20shelf%20basal%20melting%20using%20a%20fiber-optic%20distributed%20temperature%20sensing%20mooring&rft.jtitle=Geophysical%20research%20letters&rft.au=Kobs,%20Scott&rft.date=2014-10-16&rft.volume=41&rft.issue=19&rft.spage=6779&rft.epage=6786&rft.pages=6779-6786&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL061155&rft_dat=%3Cproquest_cross%3E1910955342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862113850&rft_id=info:pmid/&rfr_iscdi=true