Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method
Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regula...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2014-12, Vol.30 (8), p.1341-1351 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1351 |
---|---|
container_issue | 8 |
container_start_page | 1341 |
container_title | Quality and reliability engineering international |
container_volume | 30 |
creator | Vanli, O. Arda |
description | Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/qre.1555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642227365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642227365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</originalsourceid><addsrcrecordid>eNp10EtLw0AQB_BFFKwP8CMEvHiJ7iP7yFGLVqH1Welx2Wwmuppm290U7bc3QVEUPM3A_GYY_ggdEHxMMKYnywDHhHO-gQYE53lKBFObaIBlplKFidxGOzG-YNzhXA0QTHzjWh9c85T4KrkNfuFD63xj6vSqaeEpmDoZ-qYNvq6h7IGFGCEmq9jvmOTMrCE60yRTN4fkAYLrhqfd_jq6mEygffblHtqqTB1h_6vuoseL8-nwMh3fjK6Gp-PUMq54KnPLc2tzaqnMsoLgri2s4EUpSilVaShVTOASs5JKwFARZoSSALKoCpYVbBcdfd5dBL9cQWz13EULdW0a8KuoicgopZIJ3tHDP_TFr0L3dq-okETxTP0ctMHHGKDSi-DmJqw1wbrPW3d56z7vjqaf9M3VsP7X6bv789_exRbev70Jr1pIJrmeXY_0iE3EeMawxuwDsVaQdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626718548</pqid></control><display><type>article</type><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><source>Wiley Journals</source><creator>Vanli, O. Arda</creator><creatorcontrib>Vanli, O. Arda</creatorcontrib><description>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1555</identifier><identifier>CODEN: QREIE5</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Computer simulation ; Control systems ; Controllers ; feedback control ; Monitoring ; Monitors ; Time series ; Time series analysis ; time series modeling</subject><ispartof>Quality and reliability engineering international, 2014-12, Vol.30 (8), p.1341-1351</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.1555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.1555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vanli, O. Arda</creatorcontrib><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>feedback control</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>time series modeling</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10EtLw0AQB_BFFKwP8CMEvHiJ7iP7yFGLVqH1Welx2Wwmuppm290U7bc3QVEUPM3A_GYY_ggdEHxMMKYnywDHhHO-gQYE53lKBFObaIBlplKFidxGOzG-YNzhXA0QTHzjWh9c85T4KrkNfuFD63xj6vSqaeEpmDoZ-qYNvq6h7IGFGCEmq9jvmOTMrCE60yRTN4fkAYLrhqfd_jq6mEygffblHtqqTB1h_6vuoseL8-nwMh3fjK6Gp-PUMq54KnPLc2tzaqnMsoLgri2s4EUpSilVaShVTOASs5JKwFARZoSSALKoCpYVbBcdfd5dBL9cQWz13EULdW0a8KuoicgopZIJ3tHDP_TFr0L3dq-okETxTP0ctMHHGKDSi-DmJqw1wbrPW3d56z7vjqaf9M3VsP7X6bv789_exRbev70Jr1pIJrmeXY_0iE3EeMawxuwDsVaQdQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Vanli, O. Arda</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><author>Vanli, O. Arda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>feedback control</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>time series modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanli, O. Arda</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanli, O. Arda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2014-12</date><risdate>2014</risdate><volume>30</volume><issue>8</issue><spage>1341</spage><epage>1351</epage><pages>1341-1351</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><coden>QREIE5</coden><abstract>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qre.1555</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2014-12, Vol.30 (8), p.1341-1351 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642227365 |
source | Wiley Journals |
subjects | Bayesian analysis Computer simulation Control systems Controllers feedback control Monitoring Monitors Time series Time series analysis time series modeling |
title | Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20Proportional-Integral%20Controlled%20Processes%20using%20a%20Bayesian%20Time%20Series%20Analysis%20Method&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Vanli,%20O.%20Arda&rft.date=2014-12&rft.volume=30&rft.issue=8&rft.spage=1341&rft.epage=1351&rft.pages=1341-1351&rft.issn=0748-8017&rft.eissn=1099-1638&rft.coden=QREIE5&rft_id=info:doi/10.1002/qre.1555&rft_dat=%3Cproquest_cross%3E1642227365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626718548&rft_id=info:pmid/&rfr_iscdi=true |