Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method

Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2014-12, Vol.30 (8), p.1341-1351
1. Verfasser: Vanli, O. Arda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 8
container_start_page 1341
container_title Quality and reliability engineering international
container_volume 30
creator Vanli, O. Arda
description Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/qre.1555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642227365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642227365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</originalsourceid><addsrcrecordid>eNp10EtLw0AQB_BFFKwP8CMEvHiJ7iP7yFGLVqH1Welx2Wwmuppm290U7bc3QVEUPM3A_GYY_ggdEHxMMKYnywDHhHO-gQYE53lKBFObaIBlplKFidxGOzG-YNzhXA0QTHzjWh9c85T4KrkNfuFD63xj6vSqaeEpmDoZ-qYNvq6h7IGFGCEmq9jvmOTMrCE60yRTN4fkAYLrhqfd_jq6mEygffblHtqqTB1h_6vuoseL8-nwMh3fjK6Gp-PUMq54KnPLc2tzaqnMsoLgri2s4EUpSilVaShVTOASs5JKwFARZoSSALKoCpYVbBcdfd5dBL9cQWz13EULdW0a8KuoicgopZIJ3tHDP_TFr0L3dq-okETxTP0ctMHHGKDSi-DmJqw1wbrPW3d56z7vjqaf9M3VsP7X6bv789_exRbev70Jr1pIJrmeXY_0iE3EeMawxuwDsVaQdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626718548</pqid></control><display><type>article</type><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><source>Wiley Journals</source><creator>Vanli, O. Arda</creator><creatorcontrib>Vanli, O. Arda</creatorcontrib><description>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1555</identifier><identifier>CODEN: QREIE5</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Computer simulation ; Control systems ; Controllers ; feedback control ; Monitoring ; Monitors ; Time series ; Time series analysis ; time series modeling</subject><ispartof>Quality and reliability engineering international, 2014-12, Vol.30 (8), p.1341-1351</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.1555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.1555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vanli, O. Arda</creatorcontrib><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>feedback control</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>time series modeling</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10EtLw0AQB_BFFKwP8CMEvHiJ7iP7yFGLVqH1Welx2Wwmuppm290U7bc3QVEUPM3A_GYY_ggdEHxMMKYnywDHhHO-gQYE53lKBFObaIBlplKFidxGOzG-YNzhXA0QTHzjWh9c85T4KrkNfuFD63xj6vSqaeEpmDoZ-qYNvq6h7IGFGCEmq9jvmOTMrCE60yRTN4fkAYLrhqfd_jq6mEygffblHtqqTB1h_6vuoseL8-nwMh3fjK6Gp-PUMq54KnPLc2tzaqnMsoLgri2s4EUpSilVaShVTOASs5JKwFARZoSSALKoCpYVbBcdfd5dBL9cQWz13EULdW0a8KuoicgopZIJ3tHDP_TFr0L3dq-okETxTP0ctMHHGKDSi-DmJqw1wbrPW3d56z7vjqaf9M3VsP7X6bv789_exRbev70Jr1pIJrmeXY_0iE3EeMawxuwDsVaQdQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Vanli, O. Arda</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</title><author>Vanli, O. Arda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-79c59cc92c2744b10c92bc65bd6d778da228360d03d27e0ef13a687ee7bfb34b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>feedback control</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>time series modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanli, O. Arda</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanli, O. Arda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2014-12</date><risdate>2014</risdate><volume>30</volume><issue>8</issue><spage>1341</spage><epage>1351</epage><pages>1341-1351</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><coden>QREIE5</coden><abstract>Recently, there has been interest in applying statistical process monitoring methods to processes controlled with feedback controllers in order to eliminate assignable causes and achieve reduced overall variability. In this paper, we propose a Bayesian change‐point method to monitor processes regulated with proportional‐integral controllers. The approach is based on fitting an exponential rise model to the control input actions in response to a step shift and employs a change‐point method to detect the change. Simulation studies show that the proposed method has better run‐length performance in detecting step shifts in controlled processes than Shewhart chart on individuals and special‐cause chart on residuals of time series model. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qre.1555</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2014-12, Vol.30 (8), p.1341-1351
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_miscellaneous_1642227365
source Wiley Journals
subjects Bayesian analysis
Computer simulation
Control systems
Controllers
feedback control
Monitoring
Monitors
Time series
Time series analysis
time series modeling
title Monitoring of Proportional-Integral Controlled Processes using a Bayesian Time Series Analysis Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20Proportional-Integral%20Controlled%20Processes%20using%20a%20Bayesian%20Time%20Series%20Analysis%20Method&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Vanli,%20O.%20Arda&rft.date=2014-12&rft.volume=30&rft.issue=8&rft.spage=1341&rft.epage=1351&rft.pages=1341-1351&rft.issn=0748-8017&rft.eissn=1099-1638&rft.coden=QREIE5&rft_id=info:doi/10.1002/qre.1555&rft_dat=%3Cproquest_cross%3E1642227365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626718548&rft_id=info:pmid/&rfr_iscdi=true