No Reference Uneven Illumination Assessment for Dermoscopy Images

For the dermoscopy image, uneven illumination will influence segmentation accuracy and lead to wrong aided diagnosis result. In this paper, a no reference uneven illumination assessment metric is proposed for dermoscopy images. Firstly, the distorted image is decomposed to illumination and reflectan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-05, Vol.22 (5), p.534-538
Hauptverfasser: Lu, Yanan, Xie, Fengying, Wu, Yefen, Jiang, Zhiguo, Meng, Rusong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 5
container_start_page 534
container_title IEEE signal processing letters
container_volume 22
creator Lu, Yanan
Xie, Fengying
Wu, Yefen
Jiang, Zhiguo
Meng, Rusong
description For the dermoscopy image, uneven illumination will influence segmentation accuracy and lead to wrong aided diagnosis result. In this paper, a no reference uneven illumination assessment metric is proposed for dermoscopy images. Firstly, the distorted image is decomposed to illumination and reflectance components through variational framework for Retinex (VFR). Then, the illumination component is extracted by basis function fitting. Lastly, average gradient of the illumination component (AGIC) is calculated as the uneven illumination metric. A series of experiments show that, the proposed illumination extraction method is insensitive to the image content, and the proposed metric delivers an accurate illumination assessment result.
doi_str_mv 10.1109/LSP.2014.2357015
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642221015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6895294</ieee_id><sourcerecordid>1642221015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-88c037ff206724d8968bfce737dac72424306896904c404ee6009b229bbfea463</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcsevWydZLPZ5FjqV2FRUXsOu-lEVnaTmmyF_vemtHia4fHeMO9HyDWFGaWg7uqPtxkDymesKCug5QmZ0LKUOSsEPU07VJArBfKcXMT4DQCSynJC5i8-e0eLAZ3BbOXwF1227Pvt0Llm7LzL5jFijAO6MbM-ZPcYBh-N3-yy5dB8YbwkZ7bpI14d55SsHh8-F895_fq0XMzr3DAlxlxKA0VlLQNRMb6WSsjWGqyKat2YpDBegEiqAm44cEQBoFrGVNtabLgopuT2cHcT_M8W46iHLhrs-8ah30ZNBWeM0VQ9WeFgNcHHGNDqTeiGJuw0Bb2npRMtvaelj7RS5OYQ6RDx354eKpnixR__dGTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642221015</pqid></control><display><type>article</type><title>No Reference Uneven Illumination Assessment for Dermoscopy Images</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Yanan ; Xie, Fengying ; Wu, Yefen ; Jiang, Zhiguo ; Meng, Rusong</creator><creatorcontrib>Lu, Yanan ; Xie, Fengying ; Wu, Yefen ; Jiang, Zhiguo ; Meng, Rusong</creatorcontrib><description>For the dermoscopy image, uneven illumination will influence segmentation accuracy and lead to wrong aided diagnosis result. In this paper, a no reference uneven illumination assessment metric is proposed for dermoscopy images. Firstly, the distorted image is decomposed to illumination and reflectance components through variational framework for Retinex (VFR). Then, the illumination component is extracted by basis function fitting. Lastly, average gradient of the illumination component (AGIC) is calculated as the uneven illumination metric. A series of experiments show that, the proposed illumination extraction method is insensitive to the image content, and the proposed metric delivers an accurate illumination assessment result.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2357015</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Assessments ; Dermoscopy ; Distortion ; Illumination ; image quality assessment (IQA) ; Lighting ; Mathematical analysis ; Measurement ; no reference ; Nonlinear distortion ; Reflectivity ; Retinex (algorithm) ; Segmentation ; Signal processing algorithms ; Transform coding ; uneven illumination</subject><ispartof>IEEE signal processing letters, 2015-05, Vol.22 (5), p.534-538</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-88c037ff206724d8968bfce737dac72424306896904c404ee6009b229bbfea463</citedby><cites>FETCH-LOGICAL-c296t-88c037ff206724d8968bfce737dac72424306896904c404ee6009b229bbfea463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6895294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6895294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Yanan</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Wu, Yefen</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Meng, Rusong</creatorcontrib><title>No Reference Uneven Illumination Assessment for Dermoscopy Images</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>For the dermoscopy image, uneven illumination will influence segmentation accuracy and lead to wrong aided diagnosis result. In this paper, a no reference uneven illumination assessment metric is proposed for dermoscopy images. Firstly, the distorted image is decomposed to illumination and reflectance components through variational framework for Retinex (VFR). Then, the illumination component is extracted by basis function fitting. Lastly, average gradient of the illumination component (AGIC) is calculated as the uneven illumination metric. A series of experiments show that, the proposed illumination extraction method is insensitive to the image content, and the proposed metric delivers an accurate illumination assessment result.</description><subject>Algorithm design and analysis</subject><subject>Assessments</subject><subject>Dermoscopy</subject><subject>Distortion</subject><subject>Illumination</subject><subject>image quality assessment (IQA)</subject><subject>Lighting</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>no reference</subject><subject>Nonlinear distortion</subject><subject>Reflectivity</subject><subject>Retinex (algorithm)</subject><subject>Segmentation</subject><subject>Signal processing algorithms</subject><subject>Transform coding</subject><subject>uneven illumination</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcsevWydZLPZ5FjqV2FRUXsOu-lEVnaTmmyF_vemtHia4fHeMO9HyDWFGaWg7uqPtxkDymesKCug5QmZ0LKUOSsEPU07VJArBfKcXMT4DQCSynJC5i8-e0eLAZ3BbOXwF1227Pvt0Llm7LzL5jFijAO6MbM-ZPcYBh-N3-yy5dB8YbwkZ7bpI14d55SsHh8-F895_fq0XMzr3DAlxlxKA0VlLQNRMb6WSsjWGqyKat2YpDBegEiqAm44cEQBoFrGVNtabLgopuT2cHcT_M8W46iHLhrs-8ah30ZNBWeM0VQ9WeFgNcHHGNDqTeiGJuw0Bb2npRMtvaelj7RS5OYQ6RDx354eKpnixR__dGTD</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Lu, Yanan</creator><creator>Xie, Fengying</creator><creator>Wu, Yefen</creator><creator>Jiang, Zhiguo</creator><creator>Meng, Rusong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>No Reference Uneven Illumination Assessment for Dermoscopy Images</title><author>Lu, Yanan ; Xie, Fengying ; Wu, Yefen ; Jiang, Zhiguo ; Meng, Rusong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-88c037ff206724d8968bfce737dac72424306896904c404ee6009b229bbfea463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Assessments</topic><topic>Dermoscopy</topic><topic>Distortion</topic><topic>Illumination</topic><topic>image quality assessment (IQA)</topic><topic>Lighting</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>no reference</topic><topic>Nonlinear distortion</topic><topic>Reflectivity</topic><topic>Retinex (algorithm)</topic><topic>Segmentation</topic><topic>Signal processing algorithms</topic><topic>Transform coding</topic><topic>uneven illumination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanan</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Wu, Yefen</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Meng, Rusong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Yanan</au><au>Xie, Fengying</au><au>Wu, Yefen</au><au>Jiang, Zhiguo</au><au>Meng, Rusong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No Reference Uneven Illumination Assessment for Dermoscopy Images</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-05</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>For the dermoscopy image, uneven illumination will influence segmentation accuracy and lead to wrong aided diagnosis result. In this paper, a no reference uneven illumination assessment metric is proposed for dermoscopy images. Firstly, the distorted image is decomposed to illumination and reflectance components through variational framework for Retinex (VFR). Then, the illumination component is extracted by basis function fitting. Lastly, average gradient of the illumination component (AGIC) is calculated as the uneven illumination metric. A series of experiments show that, the proposed illumination extraction method is insensitive to the image content, and the proposed metric delivers an accurate illumination assessment result.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2014.2357015</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-05, Vol.22 (5), p.534-538
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_miscellaneous_1642221015
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Assessments
Dermoscopy
Distortion
Illumination
image quality assessment (IQA)
Lighting
Mathematical analysis
Measurement
no reference
Nonlinear distortion
Reflectivity
Retinex (algorithm)
Segmentation
Signal processing algorithms
Transform coding
uneven illumination
title No Reference Uneven Illumination Assessment for Dermoscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20Reference%20Uneven%20Illumination%20Assessment%20for%20Dermoscopy%20Images&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lu,%20Yanan&rft.date=2015-05&rft.volume=22&rft.issue=5&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2357015&rft_dat=%3Cproquest_RIE%3E1642221015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642221015&rft_id=info:pmid/&rft_ieee_id=6895294&rfr_iscdi=true