Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom
The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for the detection of hexamethyldisiloxane (HMDSO, C 6H 18OSi 2) at the sub-nL/L level in a semiconductor wafer cleanroom. Indoor air samples were collected from the room, according to EPA Metho...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2012-01, Vol.1220 (13), p.143-146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 13 |
container_start_page | 143 |
container_title | Journal of Chromatography A |
container_volume | 1220 |
creator | Cheng, Yuan-Kai Lin, Cheng-Huang Kuo, Samuel Yang, Jonathan Hsiung, Szu-Yuan Wang, Jia-Lin |
description | The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for the detection of hexamethyldisiloxane (HMDSO, C
6H
18OSi
2) at the sub-nL/L level in a semiconductor wafer cleanroom. Indoor air samples were collected from the room, according to EPA Method TO-17 using a Tedlar bag where the air samples were allowed to pass through an absorption tube for 24
h. The condensed components were then heated and simultaneously injected into a GC column through a Hadamard-injector, which was operated in accordance with the Hadamard codes. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after the inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when cyclic
S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the HMDSO signals were substantially improved by 7.4-, 15.1- and 20.1-fold, respectively. These improvements are in good agreement with theoretically calculated values (8.0-, 16.0- and 22.6-fold, respectively). We found that when the HT-GC/MS technique was applied, HMDSO could be detected at the 0.1
nL/L level. |
doi_str_mv | 10.1016/j.chroma.2011.12.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642219879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967311017900</els_id><sourcerecordid>1010898441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-c897ccb3c4365cad361c07b1331f2ab00f4ef36d4767f389c17979bcdb9749203</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1ERZfCGyDwsZekHjtrxxekqioUqRKH0rPl-M_GqyQOdha6L8Bz41UKRziNNPObb0bfh9A7IDUQ4Ff72vQpjrqmBKAGWhPCX6ANtIJVTIj2JdoQQqGSXLBz9DrnPSEgiKCv0DmlIOmWNxv063qeh2D0EuKUcfT4Tls96mTxkvSUfUxjtdMZr7eWuEt67o9Xo84Z59mZpbTdko64kHjpHbZuKd2idhLr3ZMu4_442JDDEJ_05HCYsMY_tXcJm8HpKcU4vkFnXg_ZvX2uF-jx0-23m7vq_uvnLzfX95XZglgq00phTMdMw_jWaMs4GCI6YAw81R0hvnGecdsILjxrpQEhheyM7aRoJCXsAl2uunOK3w8uL2oM2bhhKI_FQ1bAm5M3rZD_RwmQVrZNAwVtVtSkmHNyXs0pFBOPBTpxXO3VaqA6haWAqhJWWXv_fOHQjc7-XfqTTgE-rIDXUeldClk9PhSFbUmyZUzQQnxcCVdM-xFcUtkENxlnQyoxKBvDv3_4De6Xs0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010898441</pqid></control><display><type>article</type><title>Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Yuan-Kai ; Lin, Cheng-Huang ; Kuo, Samuel ; Yang, Jonathan ; Hsiung, Szu-Yuan ; Wang, Jia-Lin</creator><creatorcontrib>Cheng, Yuan-Kai ; Lin, Cheng-Huang ; Kuo, Samuel ; Yang, Jonathan ; Hsiung, Szu-Yuan ; Wang, Jia-Lin</creatorcontrib><description>The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for the detection of hexamethyldisiloxane (HMDSO, C
6H
18OSi
2) at the sub-nL/L level in a semiconductor wafer cleanroom. Indoor air samples were collected from the room, according to EPA Method TO-17 using a Tedlar bag where the air samples were allowed to pass through an absorption tube for 24
h. The condensed components were then heated and simultaneously injected into a GC column through a Hadamard-injector, which was operated in accordance with the Hadamard codes. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after the inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when cyclic
S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the HMDSO signals were substantially improved by 7.4-, 15.1- and 20.1-fold, respectively. These improvements are in good agreement with theoretically calculated values (8.0-, 16.0- and 22.6-fold, respectively). We found that when the HT-GC/MS technique was applied, HMDSO could be detected at the 0.1
nL/L level.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2011.12.006</identifier><identifier>PMID: 22192564</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>absorption ; air ; Air - analysis ; Algorithms ; AMC (airborne molecular contaminant) ; Chromatography ; Cleanroom ; Cleanrooms ; Environment, Controlled ; Environmental Monitoring - methods ; Fourier Analysis ; gas chromatography ; Gas Chromatography-Mass Spectrometry - instrumentation ; Gas Chromatography-Mass Spectrometry - methods ; Gas chromatography/mass spectrometry ; Hadamard transform ; Hexamethyldisiloxane ; HMDS ; HMDSO ; Inverse ; Mass spectrometry ; Semiconductors ; Signal to noise ratio ; Siloxanes - analysis ; Wafers</subject><ispartof>Journal of Chromatography A, 2012-01, Vol.1220 (13), p.143-146</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-c897ccb3c4365cad361c07b1331f2ab00f4ef36d4767f389c17979bcdb9749203</citedby><cites>FETCH-LOGICAL-c517t-c897ccb3c4365cad361c07b1331f2ab00f4ef36d4767f389c17979bcdb9749203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967311017900$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22192564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Yuan-Kai</creatorcontrib><creatorcontrib>Lin, Cheng-Huang</creatorcontrib><creatorcontrib>Kuo, Samuel</creatorcontrib><creatorcontrib>Yang, Jonathan</creatorcontrib><creatorcontrib>Hsiung, Szu-Yuan</creatorcontrib><creatorcontrib>Wang, Jia-Lin</creatorcontrib><title>Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for the detection of hexamethyldisiloxane (HMDSO, C
6H
18OSi
2) at the sub-nL/L level in a semiconductor wafer cleanroom. Indoor air samples were collected from the room, according to EPA Method TO-17 using a Tedlar bag where the air samples were allowed to pass through an absorption tube for 24
h. The condensed components were then heated and simultaneously injected into a GC column through a Hadamard-injector, which was operated in accordance with the Hadamard codes. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after the inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when cyclic
S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the HMDSO signals were substantially improved by 7.4-, 15.1- and 20.1-fold, respectively. These improvements are in good agreement with theoretically calculated values (8.0-, 16.0- and 22.6-fold, respectively). We found that when the HT-GC/MS technique was applied, HMDSO could be detected at the 0.1
nL/L level.</description><subject>absorption</subject><subject>air</subject><subject>Air - analysis</subject><subject>Algorithms</subject><subject>AMC (airborne molecular contaminant)</subject><subject>Chromatography</subject><subject>Cleanroom</subject><subject>Cleanrooms</subject><subject>Environment, Controlled</subject><subject>Environmental Monitoring - methods</subject><subject>Fourier Analysis</subject><subject>gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry - instrumentation</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Gas chromatography/mass spectrometry</subject><subject>Hadamard transform</subject><subject>Hexamethyldisiloxane</subject><subject>HMDS</subject><subject>HMDSO</subject><subject>Inverse</subject><subject>Mass spectrometry</subject><subject>Semiconductors</subject><subject>Signal to noise ratio</subject><subject>Siloxanes - analysis</subject><subject>Wafers</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi1ERZfCGyDwsZekHjtrxxekqioUqRKH0rPl-M_GqyQOdha6L8Bz41UKRziNNPObb0bfh9A7IDUQ4Ff72vQpjrqmBKAGWhPCX6ANtIJVTIj2JdoQQqGSXLBz9DrnPSEgiKCv0DmlIOmWNxv063qeh2D0EuKUcfT4Tls96mTxkvSUfUxjtdMZr7eWuEt67o9Xo84Z59mZpbTdko64kHjpHbZuKd2idhLr3ZMu4_442JDDEJ_05HCYsMY_tXcJm8HpKcU4vkFnXg_ZvX2uF-jx0-23m7vq_uvnLzfX95XZglgq00phTMdMw_jWaMs4GCI6YAw81R0hvnGecdsILjxrpQEhheyM7aRoJCXsAl2uunOK3w8uL2oM2bhhKI_FQ1bAm5M3rZD_RwmQVrZNAwVtVtSkmHNyXs0pFBOPBTpxXO3VaqA6haWAqhJWWXv_fOHQjc7-XfqTTgE-rIDXUeldClk9PhSFbUmyZUzQQnxcCVdM-xFcUtkENxlnQyoxKBvDv3_4De6Xs0o</recordid><startdate>20120113</startdate><enddate>20120113</enddate><creator>Cheng, Yuan-Kai</creator><creator>Lin, Cheng-Huang</creator><creator>Kuo, Samuel</creator><creator>Yang, Jonathan</creator><creator>Hsiung, Szu-Yuan</creator><creator>Wang, Jia-Lin</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120113</creationdate><title>Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom</title><author>Cheng, Yuan-Kai ; Lin, Cheng-Huang ; Kuo, Samuel ; Yang, Jonathan ; Hsiung, Szu-Yuan ; Wang, Jia-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-c897ccb3c4365cad361c07b1331f2ab00f4ef36d4767f389c17979bcdb9749203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>absorption</topic><topic>air</topic><topic>Air - analysis</topic><topic>Algorithms</topic><topic>AMC (airborne molecular contaminant)</topic><topic>Chromatography</topic><topic>Cleanroom</topic><topic>Cleanrooms</topic><topic>Environment, Controlled</topic><topic>Environmental Monitoring - methods</topic><topic>Fourier Analysis</topic><topic>gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry - instrumentation</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Gas chromatography/mass spectrometry</topic><topic>Hadamard transform</topic><topic>Hexamethyldisiloxane</topic><topic>HMDS</topic><topic>HMDSO</topic><topic>Inverse</topic><topic>Mass spectrometry</topic><topic>Semiconductors</topic><topic>Signal to noise ratio</topic><topic>Siloxanes - analysis</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yuan-Kai</creatorcontrib><creatorcontrib>Lin, Cheng-Huang</creatorcontrib><creatorcontrib>Kuo, Samuel</creatorcontrib><creatorcontrib>Yang, Jonathan</creatorcontrib><creatorcontrib>Hsiung, Szu-Yuan</creatorcontrib><creatorcontrib>Wang, Jia-Lin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yuan-Kai</au><au>Lin, Cheng-Huang</au><au>Kuo, Samuel</au><au>Yang, Jonathan</au><au>Hsiung, Szu-Yuan</au><au>Wang, Jia-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2012-01-13</date><risdate>2012</risdate><volume>1220</volume><issue>13</issue><spage>143</spage><epage>146</epage><pages>143-146</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><abstract>The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for the detection of hexamethyldisiloxane (HMDSO, C
6H
18OSi
2) at the sub-nL/L level in a semiconductor wafer cleanroom. Indoor air samples were collected from the room, according to EPA Method TO-17 using a Tedlar bag where the air samples were allowed to pass through an absorption tube for 24
h. The condensed components were then heated and simultaneously injected into a GC column through a Hadamard-injector, which was operated in accordance with the Hadamard codes. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after the inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when cyclic
S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the HMDSO signals were substantially improved by 7.4-, 15.1- and 20.1-fold, respectively. These improvements are in good agreement with theoretically calculated values (8.0-, 16.0- and 22.6-fold, respectively). We found that when the HT-GC/MS technique was applied, HMDSO could be detected at the 0.1
nL/L level.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22192564</pmid><doi>10.1016/j.chroma.2011.12.006</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 2012-01, Vol.1220 (13), p.143-146 |
issn | 0021-9673 1873-3778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642219879 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | absorption air Air - analysis Algorithms AMC (airborne molecular contaminant) Chromatography Cleanroom Cleanrooms Environment, Controlled Environmental Monitoring - methods Fourier Analysis gas chromatography Gas Chromatography-Mass Spectrometry - instrumentation Gas Chromatography-Mass Spectrometry - methods Gas chromatography/mass spectrometry Hadamard transform Hexamethyldisiloxane HMDS HMDSO Inverse Mass spectrometry Semiconductors Signal to noise ratio Siloxanes - analysis Wafers |
title | Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Hadamard%20transform-gas%20chromatography/mass%20spectrometry%20for%20the%20detection%20of%20hexamethyldisiloxane%20in%20a%20wafer%20cleanroom&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Cheng,%20Yuan-Kai&rft.date=2012-01-13&rft.volume=1220&rft.issue=13&rft.spage=143&rft.epage=146&rft.pages=143-146&rft.issn=0021-9673&rft.eissn=1873-3778&rft_id=info:doi/10.1016/j.chroma.2011.12.006&rft_dat=%3Cproquest_cross%3E1010898441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010898441&rft_id=info:pmid/22192564&rft_els_id=S0021967311017900&rfr_iscdi=true |