Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder

We extend previous work of Boyer, Davies & Guo (Fluid Dyn. Res., vol. 21, 1997, pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions induced by the disk drive entrainment at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2012-01, Vol.691, p.498-517
Hauptverfasser: Shravat, A., Cenedese, C., Caulfield, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue
container_start_page 498
container_title Journal of fluid mechanics
container_volume 691
creator Shravat, A.
Cenedese, C.
Caulfield, C. P.
description We extend previous work of Boyer, Davies & Guo (Fluid Dyn. Res., vol. 21, 1997, pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions induced by the disk drive entrainment at the interface, and similarly to the results of Boyer et al. (1997), the layer nearer to the disk deepens. Through high-frequency conductivity probe measurements, we establish that the deepening layer is very well-mixed, and the thickness of the interface between the two evolving layers appears to be approximately constant. Under certain circumstances, we find that the rate of increase in depth of the deepening layer decreases with time, at variance with the results of Boyer et al. (1997), and implying that the characteristic velocity in the deepening layer decreases as the upper layer deepens. We propose that such time-dependent deepening, and the associated weakening of the upper-layer velocities, occurs naturally because of the combined power requirements of entrainment and layer homogenization which inhibit, when the stratification is very strong, the characteristic velocities of the deepening layer approaching the (constant) velocities of the driving disk, as assumed by Boyer et al. (1997).
doi_str_mv 10.1017/jfm.2011.488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642218071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_488</cupid><sourcerecordid>2557110691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5edc57b5ac22ddd242aca57b1a57363518ce32e4cdebf33c6dc252915ffd07a33</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhoO44Di7N39AEAQP9mwqH53uo4hfIHjZ3WtTkw_J0J3WpEedf78ZHBRE8JIixVNPUbyEHAFbAAP9e-WHBWcAC9k0e2QGsm4rXUu1T2aMcV4BcHZADnNeMQaCtXpG_l3GKWGIg4sTxWjpEF5DfKB2E3EIJtPR07xOHo2r8pRczpVN4dlFWn44BR-cpb4fX2iIFKnZ9CFal36SHx777H7t6pz8vbr8c3FT3d1f316c31VGtHqqlLNG6aVCw7m1lkuOBksDyiNqoaAxTnAnjXVLL4SpreGKt6C8t0yjEHNy-uZ9TOPT2uWpG0I2ru8xunGdO6gl59AwDd-jDFjTaqm31uNP6Gpcp1gO6VqQrZJQb31nb5BJY87J-e4xhQHTppi2Mt2VOLptHF2Jo-AnOydmg71PGE3I7zNctbIp7sItdloclinYB_ex_Evxf1xxmcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914954161</pqid></control><display><type>article</type><title>Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder</title><source>Cambridge University Press Journals Complete</source><creator>Shravat, A. ; Cenedese, C. ; Caulfield, C. P.</creator><creatorcontrib>Shravat, A. ; Cenedese, C. ; Caulfield, C. P.</creatorcontrib><description>We extend previous work of Boyer, Davies &amp; Guo (Fluid Dyn. Res., vol. 21, 1997, pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions induced by the disk drive entrainment at the interface, and similarly to the results of Boyer et al. (1997), the layer nearer to the disk deepens. Through high-frequency conductivity probe measurements, we establish that the deepening layer is very well-mixed, and the thickness of the interface between the two evolving layers appears to be approximately constant. Under certain circumstances, we find that the rate of increase in depth of the deepening layer decreases with time, at variance with the results of Boyer et al. (1997), and implying that the characteristic velocity in the deepening layer decreases as the upper layer deepens. We propose that such time-dependent deepening, and the associated weakening of the upper-layer velocities, occurs naturally because of the combined power requirements of entrainment and layer homogenization which inhibit, when the stratification is very strong, the characteristic velocities of the deepening layer approaching the (constant) velocities of the driving disk, as assumed by Boyer et al. (1997).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.488</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Cylinders ; Disks ; Earth, ocean, space ; Entrainment ; Exact sciences and technology ; External geophysics ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Geophysics. Techniques, methods, instrumentation and models ; Homogenizing ; Stratified flow ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2012-01, Vol.691, p.498-517</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-5edc57b5ac22ddd242aca57b1a57363518ce32e4cdebf33c6dc252915ffd07a33</citedby><cites>FETCH-LOGICAL-c397t-5edc57b5ac22ddd242aca57b1a57363518ce32e4cdebf33c6dc252915ffd07a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011004885/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25948149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shravat, A.</creatorcontrib><creatorcontrib>Cenedese, C.</creatorcontrib><creatorcontrib>Caulfield, C. P.</creatorcontrib><title>Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We extend previous work of Boyer, Davies &amp; Guo (Fluid Dyn. Res., vol. 21, 1997, pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions induced by the disk drive entrainment at the interface, and similarly to the results of Boyer et al. (1997), the layer nearer to the disk deepens. Through high-frequency conductivity probe measurements, we establish that the deepening layer is very well-mixed, and the thickness of the interface between the two evolving layers appears to be approximately constant. Under certain circumstances, we find that the rate of increase in depth of the deepening layer decreases with time, at variance with the results of Boyer et al. (1997), and implying that the characteristic velocity in the deepening layer decreases as the upper layer deepens. We propose that such time-dependent deepening, and the associated weakening of the upper-layer velocities, occurs naturally because of the combined power requirements of entrainment and layer homogenization which inhibit, when the stratification is very strong, the characteristic velocities of the deepening layer approaching the (constant) velocities of the driving disk, as assumed by Boyer et al. (1997).</description><subject>Boundary layer</subject><subject>Cylinders</subject><subject>Disks</subject><subject>Earth, ocean, space</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Homogenizing</subject><subject>Stratified flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LJDEQhoO44Di7N39AEAQP9mwqH53uo4hfIHjZ3WtTkw_J0J3WpEedf78ZHBRE8JIixVNPUbyEHAFbAAP9e-WHBWcAC9k0e2QGsm4rXUu1T2aMcV4BcHZADnNeMQaCtXpG_l3GKWGIg4sTxWjpEF5DfKB2E3EIJtPR07xOHo2r8pRczpVN4dlFWn44BR-cpb4fX2iIFKnZ9CFal36SHx777H7t6pz8vbr8c3FT3d1f316c31VGtHqqlLNG6aVCw7m1lkuOBksDyiNqoaAxTnAnjXVLL4SpreGKt6C8t0yjEHNy-uZ9TOPT2uWpG0I2ru8xunGdO6gl59AwDd-jDFjTaqm31uNP6Gpcp1gO6VqQrZJQb31nb5BJY87J-e4xhQHTppi2Mt2VOLptHF2Jo-AnOydmg71PGE3I7zNctbIp7sItdloclinYB_ex_Evxf1xxmcY</recordid><startdate>20120125</startdate><enddate>20120125</enddate><creator>Shravat, A.</creator><creator>Cenedese, C.</creator><creator>Caulfield, C. P.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120125</creationdate><title>Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder</title><author>Shravat, A. ; Cenedese, C. ; Caulfield, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5edc57b5ac22ddd242aca57b1a57363518ce32e4cdebf33c6dc252915ffd07a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary layer</topic><topic>Cylinders</topic><topic>Disks</topic><topic>Earth, ocean, space</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Homogenizing</topic><topic>Stratified flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shravat, A.</creatorcontrib><creatorcontrib>Cenedese, C.</creatorcontrib><creatorcontrib>Caulfield, C. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shravat, A.</au><au>Cenedese, C.</au><au>Caulfield, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-01-25</date><risdate>2012</risdate><volume>691</volume><spage>498</spage><epage>517</epage><pages>498-517</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We extend previous work of Boyer, Davies &amp; Guo (Fluid Dyn. Res., vol. 21, 1997, pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions induced by the disk drive entrainment at the interface, and similarly to the results of Boyer et al. (1997), the layer nearer to the disk deepens. Through high-frequency conductivity probe measurements, we establish that the deepening layer is very well-mixed, and the thickness of the interface between the two evolving layers appears to be approximately constant. Under certain circumstances, we find that the rate of increase in depth of the deepening layer decreases with time, at variance with the results of Boyer et al. (1997), and implying that the characteristic velocity in the deepening layer decreases as the upper layer deepens. We propose that such time-dependent deepening, and the associated weakening of the upper-layer velocities, occurs naturally because of the combined power requirements of entrainment and layer homogenization which inhibit, when the stratification is very strong, the characteristic velocities of the deepening layer approaching the (constant) velocities of the driving disk, as assumed by Boyer et al. (1997).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.488</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-01, Vol.691, p.498-517
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642218071
source Cambridge University Press Journals Complete
subjects Boundary layer
Cylinders
Disks
Earth, ocean, space
Entrainment
Exact sciences and technology
External geophysics
Flow velocity
Fluid dynamics
Fluid flow
Fluid mechanics
Geophysics. Techniques, methods, instrumentation and models
Homogenizing
Stratified flow
Turbulence
Turbulent flow
title Entrainment and mixing dynamics of surface-stress-driven stratified flow in a cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entrainment%20and%20mixing%20dynamics%20of%20surface-stress-driven%20stratified%20flow%20in%20a%20cylinder&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Shravat,%20A.&rft.date=2012-01-25&rft.volume=691&rft.spage=498&rft.epage=517&rft.pages=498-517&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.488&rft_dat=%3Cproquest_cross%3E2557110691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914954161&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_488&rfr_iscdi=true