Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD

•We fabricate FeCrAl-Y2O3 ODS alloys using a new route, electron beam physical vapor deposition.•We fabricate FeCrAl-Y2O3 ODS alloys with wide yttria content range of 0.02–8.47wt.%.•The microstructure of dispersoids fabricated by this route was characterized and compared with that of dispersoids fab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2013-11, Vol.284, p.679-682
Hauptverfasser: Lin, Xiu, Li, Mingwei, Zhong, Yesheng, Zhao, Yijie, Sun, Yue, Zhao, Shuyuan, He, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue
container_start_page 679
container_title Applied surface science
container_volume 284
creator Lin, Xiu
Li, Mingwei
Zhong, Yesheng
Zhao, Yijie
Sun, Yue
Zhao, Shuyuan
He, Xiaodong
description •We fabricate FeCrAl-Y2O3 ODS alloys using a new route, electron beam physical vapor deposition.•We fabricate FeCrAl-Y2O3 ODS alloys with wide yttria content range of 0.02–8.47wt.%.•The microstructure of dispersoids fabricated by this route was characterized and compared with that of dispersoids fabricated by conventional mechanical alloying method.•We disclose the relationship between hardness and yttria content. Ferritic ODS alloys are attractive due to their high creep and oxidation resistance at temperatures above 1000°C. However, the effect of yttria content is never discussed, because high yttria content is hardly achieved in the conventional mechanical alloying method. Here we report the fabrication method of ferritic ODS alloy foils with high oxide contents, as high as 8.5wt.%. The dispersoids in the ODS alloy fabricated by this method are mainly composed of bcc structured yttria, no Y–Al–O nanocluster was detected. The hardness was found to increase with the yttria content linearly, it was taken that both Orowan and Hall–Petch mechanism contributed to the strength.
doi_str_mv 10.1016/j.apsusc.2013.07.153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213014645</els_id><sourcerecordid>1642217782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-e72b26d7d9f2274f6202162f050c4fb859d961ea0e8abce80a310fa24ff6ff853</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi3USmwpb9CDL0i9JLWdxE4uSBQorURFJUqv1sQes14Fe2s7pfv2ZLWox55Gmvn-Gc1HyAfOas64_LSpYZvnbGrBeFMzVfOuOSIr3qum6rq-fUNWCzZUbdOIY_Iu5w1jXCzTFUnfvUkxlzSbMiekECxdQ7IBc6bR0QAhmrTLBabJB6QOU_LFG3p3dU-XXtxRF_1En31Z07V_XNP411ukJoaCoVAHY_IGClo67uj15x-_rt6Ttw6mjKev9YQ8fLn-efm1ur27-XZ5cVuZRg6lQiVGIa2ygxNCtU4KJrgUjnXMtG7su8EOkiMw7GE02DNoOHMgWuekc33XnJCPh73bFH_PmIt-8tngNEHAOGfNZSsEV6oXC9oe0L2LnNDpbfJPkHaaM71XrDf6oFjvFWum9KJ4iZ29XoBsYHIJgvH5X1YopZjs-oU7P3C4vPvHY9LZeAwGrU9oirbR___QCzKnlVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642217782</pqid></control><display><type>article</type><title>Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Xiu ; Li, Mingwei ; Zhong, Yesheng ; Zhao, Yijie ; Sun, Yue ; Zhao, Shuyuan ; He, Xiaodong</creator><creatorcontrib>Lin, Xiu ; Li, Mingwei ; Zhong, Yesheng ; Zhao, Yijie ; Sun, Yue ; Zhao, Shuyuan ; He, Xiaodong</creatorcontrib><description>•We fabricate FeCrAl-Y2O3 ODS alloys using a new route, electron beam physical vapor deposition.•We fabricate FeCrAl-Y2O3 ODS alloys with wide yttria content range of 0.02–8.47wt.%.•The microstructure of dispersoids fabricated by this route was characterized and compared with that of dispersoids fabricated by conventional mechanical alloying method.•We disclose the relationship between hardness and yttria content. Ferritic ODS alloys are attractive due to their high creep and oxidation resistance at temperatures above 1000°C. However, the effect of yttria content is never discussed, because high yttria content is hardly achieved in the conventional mechanical alloying method. Here we report the fabrication method of ferritic ODS alloy foils with high oxide contents, as high as 8.5wt.%. The dispersoids in the ODS alloy fabricated by this method are mainly composed of bcc structured yttria, no Y–Al–O nanocluster was detected. The hardness was found to increase with the yttria content linearly, it was taken that both Orowan and Hall–Petch mechanism contributed to the strength.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.07.153</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Dispersion hardening alloys ; Dispersions ; Dispersoids ; Exact sciences and technology ; Ferritic ODS alloy ; Foils ; Foils (structural shapes) ; Hardness ; Oxidation resistance ; Oxides ; Physical vapor deposition (PVD) ; Physics ; TEM ; Yttrium oxide</subject><ispartof>Applied surface science, 2013-11, Vol.284, p.679-682</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-e72b26d7d9f2274f6202162f050c4fb859d961ea0e8abce80a310fa24ff6ff853</citedby><cites>FETCH-LOGICAL-c369t-e72b26d7d9f2274f6202162f050c4fb859d961ea0e8abce80a310fa24ff6ff853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2013.07.153$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27770658$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xiu</creatorcontrib><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Zhong, Yesheng</creatorcontrib><creatorcontrib>Zhao, Yijie</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zhao, Shuyuan</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><title>Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD</title><title>Applied surface science</title><description>•We fabricate FeCrAl-Y2O3 ODS alloys using a new route, electron beam physical vapor deposition.•We fabricate FeCrAl-Y2O3 ODS alloys with wide yttria content range of 0.02–8.47wt.%.•The microstructure of dispersoids fabricated by this route was characterized and compared with that of dispersoids fabricated by conventional mechanical alloying method.•We disclose the relationship between hardness and yttria content. Ferritic ODS alloys are attractive due to their high creep and oxidation resistance at temperatures above 1000°C. However, the effect of yttria content is never discussed, because high yttria content is hardly achieved in the conventional mechanical alloying method. Here we report the fabrication method of ferritic ODS alloy foils with high oxide contents, as high as 8.5wt.%. The dispersoids in the ODS alloy fabricated by this method are mainly composed of bcc structured yttria, no Y–Al–O nanocluster was detected. The hardness was found to increase with the yttria content linearly, it was taken that both Orowan and Hall–Petch mechanism contributed to the strength.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dispersion hardening alloys</subject><subject>Dispersions</subject><subject>Dispersoids</subject><subject>Exact sciences and technology</subject><subject>Ferritic ODS alloy</subject><subject>Foils</subject><subject>Foils (structural shapes)</subject><subject>Hardness</subject><subject>Oxidation resistance</subject><subject>Oxides</subject><subject>Physical vapor deposition (PVD)</subject><subject>Physics</subject><subject>TEM</subject><subject>Yttrium oxide</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhi3USmwpb9CDL0i9JLWdxE4uSBQorURFJUqv1sQes14Fe2s7pfv2ZLWox55Gmvn-Gc1HyAfOas64_LSpYZvnbGrBeFMzVfOuOSIr3qum6rq-fUNWCzZUbdOIY_Iu5w1jXCzTFUnfvUkxlzSbMiekECxdQ7IBc6bR0QAhmrTLBabJB6QOU_LFG3p3dU-XXtxRF_1En31Z07V_XNP411ukJoaCoVAHY_IGClo67uj15x-_rt6Ttw6mjKev9YQ8fLn-efm1ur27-XZ5cVuZRg6lQiVGIa2ygxNCtU4KJrgUjnXMtG7su8EOkiMw7GE02DNoOHMgWuekc33XnJCPh73bFH_PmIt-8tngNEHAOGfNZSsEV6oXC9oe0L2LnNDpbfJPkHaaM71XrDf6oFjvFWum9KJ4iZ29XoBsYHIJgvH5X1YopZjs-oU7P3C4vPvHY9LZeAwGrU9oirbR___QCzKnlVQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lin, Xiu</creator><creator>Li, Mingwei</creator><creator>Zhong, Yesheng</creator><creator>Zhao, Yijie</creator><creator>Sun, Yue</creator><creator>Zhao, Shuyuan</creator><creator>He, Xiaodong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD</title><author>Lin, Xiu ; Li, Mingwei ; Zhong, Yesheng ; Zhao, Yijie ; Sun, Yue ; Zhao, Shuyuan ; He, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-e72b26d7d9f2274f6202162f050c4fb859d961ea0e8abce80a310fa24ff6ff853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dispersion hardening alloys</topic><topic>Dispersions</topic><topic>Dispersoids</topic><topic>Exact sciences and technology</topic><topic>Ferritic ODS alloy</topic><topic>Foils</topic><topic>Foils (structural shapes)</topic><topic>Hardness</topic><topic>Oxidation resistance</topic><topic>Oxides</topic><topic>Physical vapor deposition (PVD)</topic><topic>Physics</topic><topic>TEM</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xiu</creatorcontrib><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Zhong, Yesheng</creatorcontrib><creatorcontrib>Zhao, Yijie</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zhao, Shuyuan</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xiu</au><au>Li, Mingwei</au><au>Zhong, Yesheng</au><au>Zhao, Yijie</au><au>Sun, Yue</au><au>Zhao, Shuyuan</au><au>He, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD</atitle><jtitle>Applied surface science</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>284</volume><spage>679</spage><epage>682</epage><pages>679-682</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•We fabricate FeCrAl-Y2O3 ODS alloys using a new route, electron beam physical vapor deposition.•We fabricate FeCrAl-Y2O3 ODS alloys with wide yttria content range of 0.02–8.47wt.%.•The microstructure of dispersoids fabricated by this route was characterized and compared with that of dispersoids fabricated by conventional mechanical alloying method.•We disclose the relationship between hardness and yttria content. Ferritic ODS alloys are attractive due to their high creep and oxidation resistance at temperatures above 1000°C. However, the effect of yttria content is never discussed, because high yttria content is hardly achieved in the conventional mechanical alloying method. Here we report the fabrication method of ferritic ODS alloy foils with high oxide contents, as high as 8.5wt.%. The dispersoids in the ODS alloy fabricated by this method are mainly composed of bcc structured yttria, no Y–Al–O nanocluster was detected. The hardness was found to increase with the yttria content linearly, it was taken that both Orowan and Hall–Petch mechanism contributed to the strength.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.07.153</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2013-11, Vol.284, p.679-682
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1642217782
source Elsevier ScienceDirect Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Dispersion hardening alloys
Dispersions
Dispersoids
Exact sciences and technology
Ferritic ODS alloy
Foils
Foils (structural shapes)
Hardness
Oxidation resistance
Oxides
Physical vapor deposition (PVD)
Physics
TEM
Yttrium oxide
title Microstructure and hardness of nanocrystalline ferritic ODS alloy foil with high oxide content fabricated by EBPVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20hardness%20of%20nanocrystalline%20ferritic%20ODS%20alloy%20foil%20with%20high%20oxide%20content%20fabricated%20by%20EBPVD&rft.jtitle=Applied%20surface%20science&rft.au=Lin,%20Xiu&rft.date=2013-11-01&rft.volume=284&rft.spage=679&rft.epage=682&rft.pages=679-682&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.07.153&rft_dat=%3Cproquest_cross%3E1642217782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642217782&rft_id=info:pmid/&rft_els_id=S0169433213014645&rfr_iscdi=true