Energy spectra of stably stratified turbulence

We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizonta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2012-05, Vol.698, p.19-50
Hauptverfasser: Kimura, Y., Herring, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 19
container_title Journal of fluid mechanics
container_volume 698
creator Kimura, Y.
Herring, J. R.
description We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.
doi_str_mv 10.1017/jfm.2011.546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_546</cupid><sourcerecordid>2636793861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI7ufICCCC5sPSfNZbKUYbzAgBtdhzRNhw69jEm7mLc3ZQYREVwdcvj-P8lHyDVChoDyYVu1GQXEjDNxQmbIhEqlYPyUzAAoTREpnJOLELYAmIOSM5KtOuc3-yTsnB28SfoqCYMpmriJx6Gualcmw-iLsXGddZfkrDJNcFfHOScfT6v35Uu6fnt-XT6uU8sEG9JKlLTgXEpg1HABAjkFJRRfCIMMJQdhHc2NY0Y6BC5o5UpRGFDcxpDN5-Tu0Lvz_efowqDbOljXNKZz_Rg0CkYpypzj_2iO0wukyiN68wvd9qPv4kc0RkEsp0pO1P2Bsr4PwbtK73zdGr-PkJ486-hZT5519Bzx22OpCdY0lTedrcN3hvIFB1QTlx1rTVv4uty4n7f_UfwFWD-I2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002432973</pqid></control><display><type>article</type><title>Energy spectra of stably stratified turbulence</title><source>Cambridge Journals</source><creator>Kimura, Y. ; Herring, J. R.</creator><creatorcontrib>Kimura, Y. ; Herring, J. R.</creatorcontrib><description>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.546</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Geophysics. Techniques, methods, instrumentation and models ; Horizontal ; Isotropic turbulence; homogeneous turbulence ; Mathematical models ; Nonhomogeneous flows ; Physics ; Simulation ; Spectra ; Stratified flows ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Wavenumber</subject><ispartof>Journal of fluid mechanics, 2012-05, Vol.698, p.19-50</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</citedby><cites>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011005465/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25850196$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Herring, J. R.</creatorcontrib><title>Energy spectra of stably stratified turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</description><subject>Computational fluid dynamics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Horizontal</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Mathematical models</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Stratified flows</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Wavenumber</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtKxDAUhoMoOI7ufICCCC5sPSfNZbKUYbzAgBtdhzRNhw69jEm7mLc3ZQYREVwdcvj-P8lHyDVChoDyYVu1GQXEjDNxQmbIhEqlYPyUzAAoTREpnJOLELYAmIOSM5KtOuc3-yTsnB28SfoqCYMpmriJx6Gualcmw-iLsXGddZfkrDJNcFfHOScfT6v35Uu6fnt-XT6uU8sEG9JKlLTgXEpg1HABAjkFJRRfCIMMJQdhHc2NY0Y6BC5o5UpRGFDcxpDN5-Tu0Lvz_efowqDbOljXNKZz_Rg0CkYpypzj_2iO0wukyiN68wvd9qPv4kc0RkEsp0pO1P2Bsr4PwbtK73zdGr-PkJ486-hZT5519Bzx22OpCdY0lTedrcN3hvIFB1QTlx1rTVv4uty4n7f_UfwFWD-I2g</recordid><startdate>20120510</startdate><enddate>20120510</enddate><creator>Kimura, Y.</creator><creator>Herring, J. R.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120510</creationdate><title>Energy spectra of stably stratified turbulence</title><author>Kimura, Y. ; Herring, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Horizontal</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Mathematical models</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Stratified flows</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Herring, J. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Y.</au><au>Herring, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy spectra of stably stratified turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-05-10</date><risdate>2012</risdate><volume>698</volume><spage>19</spage><epage>50</epage><pages>19-50</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.546</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-05, Vol.698, p.19-50
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642217351
source Cambridge Journals
subjects Computational fluid dynamics
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid dynamics
Fluid flow
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Geophysics. Techniques, methods, instrumentation and models
Horizontal
Isotropic turbulence
homogeneous turbulence
Mathematical models
Nonhomogeneous flows
Physics
Simulation
Spectra
Stratified flows
Turbulence
Turbulent flow
Turbulent flows, convection, and heat transfer
Wavenumber
title Energy spectra of stably stratified turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20spectra%20of%20stably%20stratified%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kimura,%20Y.&rft.date=2012-05-10&rft.volume=698&rft.spage=19&rft.epage=50&rft.pages=19-50&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.546&rft_dat=%3Cproquest_cross%3E2636793861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1002432973&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_546&rfr_iscdi=true