Energy spectra of stably stratified turbulence
We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizonta...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2012-05, Vol.698, p.19-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Journal of fluid mechanics |
container_volume | 698 |
creator | Kimura, Y. Herring, J. R. |
description | We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions. |
doi_str_mv | 10.1017/jfm.2011.546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_546</cupid><sourcerecordid>2636793861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI7ufICCCC5sPSfNZbKUYbzAgBtdhzRNhw69jEm7mLc3ZQYREVwdcvj-P8lHyDVChoDyYVu1GQXEjDNxQmbIhEqlYPyUzAAoTREpnJOLELYAmIOSM5KtOuc3-yTsnB28SfoqCYMpmriJx6Gualcmw-iLsXGddZfkrDJNcFfHOScfT6v35Uu6fnt-XT6uU8sEG9JKlLTgXEpg1HABAjkFJRRfCIMMJQdhHc2NY0Y6BC5o5UpRGFDcxpDN5-Tu0Lvz_efowqDbOljXNKZz_Rg0CkYpypzj_2iO0wukyiN68wvd9qPv4kc0RkEsp0pO1P2Bsr4PwbtK73zdGr-PkJ486-hZT5519Bzx22OpCdY0lTedrcN3hvIFB1QTlx1rTVv4uty4n7f_UfwFWD-I2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002432973</pqid></control><display><type>article</type><title>Energy spectra of stably stratified turbulence</title><source>Cambridge Journals</source><creator>Kimura, Y. ; Herring, J. R.</creator><creatorcontrib>Kimura, Y. ; Herring, J. R.</creatorcontrib><description>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.546</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Geophysics. Techniques, methods, instrumentation and models ; Horizontal ; Isotropic turbulence; homogeneous turbulence ; Mathematical models ; Nonhomogeneous flows ; Physics ; Simulation ; Spectra ; Stratified flows ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Wavenumber</subject><ispartof>Journal of fluid mechanics, 2012-05, Vol.698, p.19-50</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</citedby><cites>FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011005465/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25850196$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Herring, J. R.</creatorcontrib><title>Energy spectra of stably stratified turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</description><subject>Computational fluid dynamics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Horizontal</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Mathematical models</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Stratified flows</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Wavenumber</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtKxDAUhoMoOI7ufICCCC5sPSfNZbKUYbzAgBtdhzRNhw69jEm7mLc3ZQYREVwdcvj-P8lHyDVChoDyYVu1GQXEjDNxQmbIhEqlYPyUzAAoTREpnJOLELYAmIOSM5KtOuc3-yTsnB28SfoqCYMpmriJx6Gualcmw-iLsXGddZfkrDJNcFfHOScfT6v35Uu6fnt-XT6uU8sEG9JKlLTgXEpg1HABAjkFJRRfCIMMJQdhHc2NY0Y6BC5o5UpRGFDcxpDN5-Tu0Lvz_efowqDbOljXNKZz_Rg0CkYpypzj_2iO0wukyiN68wvd9qPv4kc0RkEsp0pO1P2Bsr4PwbtK73zdGr-PkJ486-hZT5519Bzx22OpCdY0lTedrcN3hvIFB1QTlx1rTVv4uty4n7f_UfwFWD-I2g</recordid><startdate>20120510</startdate><enddate>20120510</enddate><creator>Kimura, Y.</creator><creator>Herring, J. R.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120510</creationdate><title>Energy spectra of stably stratified turbulence</title><author>Kimura, Y. ; Herring, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f6d2b5577042a56061520969586a1417506ce23ae4a7e10562fed6ba095c770c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Horizontal</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Mathematical models</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Stratified flows</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Herring, J. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Y.</au><au>Herring, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy spectra of stably stratified turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-05-10</date><risdate>2012</risdate><volume>698</volume><spage>19</spage><epage>50</epage><pages>19-50</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate homogeneous incompressible turbulence subjected to a range of degrees of stratification. Our basic method is pseudospectral direct numerical simulations at a resolution of $102{4}^{3} $. Such resolution is sufficient to reveal inertial power-law ranges for suitably comprised horizontal and vertical spectra, which are designated as the wave and vortex mode (the Craya–Herring representation). We study mainly turbulence that is produced from randomly large-scale forcing via an Ornstein–Uhlenbeck process applied isotropically to the horizontal velocity field. In general, both the wave and vortex spectra are consistent with a Kolmogorov-like ${k}^{\ensuremath{-} 5/ 3} $ range at sufficiently large $k$. At large scales, and for sufficiently strong stratification, the wave spectrum is a steeper ${ k}_{\perp }^{\ensuremath{-} 2} $, while that for the vortex component is consistent with ${ k}_{\perp }^{\ensuremath{-} 3} $. Here ${k}_{\perp } $ is the horizontally gathered wavenumber. In contrast to the horizontal wavenumber spectra, the vertical wavenumber spectra show very different features. For those spectra, a clear ${ k}_{z}^{\ensuremath{-} 3} $ dependence for small scales is observed while the large scales show rather flat spectra. By modelling the horizontal layering of vorticity, we attempt to explain the flat spectra. These spectra are linked to two-point structure functions of the velocity correlations in the horizontal and vertical directions. We can observe the power-law transition also in certain of the two-point structure functions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.546</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2012-05, Vol.698, p.19-50 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642217351 |
source | Cambridge Journals |
subjects | Computational fluid dynamics Earth, ocean, space Exact sciences and technology External geophysics Fluid dynamics Fluid flow Fluid mechanics Fundamental areas of phenomenology (including applications) Geophysics. Techniques, methods, instrumentation and models Horizontal Isotropic turbulence homogeneous turbulence Mathematical models Nonhomogeneous flows Physics Simulation Spectra Stratified flows Turbulence Turbulent flow Turbulent flows, convection, and heat transfer Wavenumber |
title | Energy spectra of stably stratified turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20spectra%20of%20stably%20stratified%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kimura,%20Y.&rft.date=2012-05-10&rft.volume=698&rft.spage=19&rft.epage=50&rft.pages=19-50&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.546&rft_dat=%3Cproquest_cross%3E2636793861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1002432973&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_546&rfr_iscdi=true |