Aero-optics of subsonic turbulent boundary layers
Compressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated fr...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2012-04, Vol.696, p.122-151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 122 |
container_title | Journal of fluid mechanics |
container_volume | 696 |
creator | Wang, Kan Wang, Meng |
description | Compressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated from the density field, and wavefront distortions of an optical beam traversing the boundary layer are computed based on geometric optics. The effects of aperture size, small-scale turbulence, different flow regions and beam elevation angle are examined and the underlying flow physics is analysed. It is found that the level of optical distortion decreases with increasing Reynolds number within the Reynolds-number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analysed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton’s linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined. |
doi_str_mv | 10.1017/jfm.2012.11 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_11</cupid><sourcerecordid>2622376851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d7b8047702584b2cac6531fe5a5906cb08d5ed66674c5b45de7ab422a74f60d83</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQQBdRsFZP_oEgCIKkzmz2IzmWUj-g4EXPy-5mIylJtu4mh_57E1oUxIOnubx5wzxCrhEWCCgftlW7oIB0gXhCZshEkUrB-CmZAVCaIlI4JxcxbgEwg0LOCC5d8Knf9bWNia-SOJjou9om_RDM0LiuT4wfulKHfdLovQvxkpxVuonu6jjn5P1x_bZ6TjevTy-r5Sa1o7lPS2lyYFIC5Tkz1GoreIaV45oXIKyBvOSuFEJIZrlhvHRSG0aplqwSUObZnNwdvLvgPwcXe9XW0bqm0Z3zQ1QoRholZf9AM-QChOATevML3fohdOMjqhCU0oIXE3R_gGzwMQZXqV2o2zGBQlBTaDWGVlNohTjSt0eljlY3VdCdreP3CuVS5kywkUuPVt2aUJcf7uf2X94vpriKQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>962229598</pqid></control><display><type>article</type><title>Aero-optics of subsonic turbulent boundary layers</title><source>Cambridge University Press Journals Complete</source><creator>Wang, Kan ; Wang, Meng</creator><creatorcontrib>Wang, Kan ; Wang, Meng</creatorcontrib><description>Compressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated from the density field, and wavefront distortions of an optical beam traversing the boundary layer are computed based on geometric optics. The effects of aperture size, small-scale turbulence, different flow regions and beam elevation angle are examined and the underlying flow physics is analysed. It is found that the level of optical distortion decreases with increasing Reynolds number within the Reynolds-number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analysed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton’s linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.11</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Beams (radiation) ; Boundary layer ; Boundary layer and shear turbulence ; Boundary layers ; Compressible flows; shock and detonation phenomena ; Computational fluid dynamics ; Density ; Distortion ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; General subsonic flows ; Mathematical analysis ; Optics ; Physics ; Simulation ; Turbulence ; Turbulence simulation and modeling ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2012-04, Vol.696, p.122-151</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d7b8047702584b2cac6531fe5a5906cb08d5ed66674c5b45de7ab422a74f60d83</citedby><cites>FETCH-LOGICAL-c309t-d7b8047702584b2cac6531fe5a5906cb08d5ed66674c5b45de7ab422a74f60d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012000110/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25778464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kan</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><title>Aero-optics of subsonic turbulent boundary layers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Compressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated from the density field, and wavefront distortions of an optical beam traversing the boundary layer are computed based on geometric optics. The effects of aperture size, small-scale turbulence, different flow regions and beam elevation angle are examined and the underlying flow physics is analysed. It is found that the level of optical distortion decreases with increasing Reynolds number within the Reynolds-number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analysed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton’s linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.</description><subject>Anisotropy</subject><subject>Beams (radiation)</subject><subject>Boundary layer</subject><subject>Boundary layer and shear turbulence</subject><subject>Boundary layers</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Distortion</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General subsonic flows</subject><subject>Mathematical analysis</subject><subject>Optics</subject><subject>Physics</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1Lw0AQQBdRsFZP_oEgCIKkzmz2IzmWUj-g4EXPy-5mIylJtu4mh_57E1oUxIOnubx5wzxCrhEWCCgftlW7oIB0gXhCZshEkUrB-CmZAVCaIlI4JxcxbgEwg0LOCC5d8Knf9bWNia-SOJjou9om_RDM0LiuT4wfulKHfdLovQvxkpxVuonu6jjn5P1x_bZ6TjevTy-r5Sa1o7lPS2lyYFIC5Tkz1GoreIaV45oXIKyBvOSuFEJIZrlhvHRSG0aplqwSUObZnNwdvLvgPwcXe9XW0bqm0Z3zQ1QoRholZf9AM-QChOATevML3fohdOMjqhCU0oIXE3R_gGzwMQZXqV2o2zGBQlBTaDWGVlNohTjSt0eljlY3VdCdreP3CuVS5kywkUuPVt2aUJcf7uf2X94vpriKQQ</recordid><startdate>20120410</startdate><enddate>20120410</enddate><creator>Wang, Kan</creator><creator>Wang, Meng</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120410</creationdate><title>Aero-optics of subsonic turbulent boundary layers</title><author>Wang, Kan ; Wang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d7b8047702584b2cac6531fe5a5906cb08d5ed66674c5b45de7ab422a74f60d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anisotropy</topic><topic>Beams (radiation)</topic><topic>Boundary layer</topic><topic>Boundary layer and shear turbulence</topic><topic>Boundary layers</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Distortion</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General subsonic flows</topic><topic>Mathematical analysis</topic><topic>Optics</topic><topic>Physics</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kan</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kan</au><au>Wang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aero-optics of subsonic turbulent boundary layers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-04-10</date><risdate>2012</risdate><volume>696</volume><spage>122</spage><epage>151</epage><pages>122-151</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Compressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated from the density field, and wavefront distortions of an optical beam traversing the boundary layer are computed based on geometric optics. The effects of aperture size, small-scale turbulence, different flow regions and beam elevation angle are examined and the underlying flow physics is analysed. It is found that the level of optical distortion decreases with increasing Reynolds number within the Reynolds-number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analysed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton’s linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.11</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2012-04, Vol.696, p.122-151 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642217248 |
source | Cambridge University Press Journals Complete |
subjects | Anisotropy Beams (radiation) Boundary layer Boundary layer and shear turbulence Boundary layers Compressible flows shock and detonation phenomena Computational fluid dynamics Density Distortion Exact sciences and technology Fluid dynamics Fluid flow Fluid mechanics Fundamental areas of phenomenology (including applications) General subsonic flows Mathematical analysis Optics Physics Simulation Turbulence Turbulence simulation and modeling Turbulent flow Turbulent flows, convection, and heat transfer |
title | Aero-optics of subsonic turbulent boundary layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aero-optics%20of%20subsonic%20turbulent%20boundary%20layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wang,%20Kan&rft.date=2012-04-10&rft.volume=696&rft.spage=122&rft.epage=151&rft.pages=122-151&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.11&rft_dat=%3Cproquest_cross%3E2622376851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=962229598&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_11&rfr_iscdi=true |