Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability

•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2013-09, Vol.280, p.820-827
Hauptverfasser: Fleming, Robert A., Zou, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue
container_start_page 820
container_title Applied surface science
container_volume 280
creator Fleming, Robert A.
Zou, Min
description •Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.
doi_str_mv 10.1016/j.apsusc.2013.05.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213009951</els_id><sourcerecordid>1642217219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</originalsourceid><addsrcrecordid>eNp9UEuLFDEQDovCjqv_wENfBC_dm0enO7kIsqi7sOBBPYfqJONk6EnaVFqZf2-aWYS9eCr4XlX1EfKW0Y5RNtweO1hwRdtxykRHZUcHdUV2TI2ilVL1L8iuynTbC8GvySvEI6WMV3ZH1m9hDhaaCDEtkEuws28nQO-afZhP2KTYlFAghvXU4DphyVA8Nn9COTRzij_b4vPGLD4fzi6n5bAFNhDdMzBNFcQCU2XL-TV5uYcZ_ZuneUN-fP70_e6-ffz65eHu42NrxaBLa0c3Mm7dpIVmdBJKKnBKcs0cUG17zmjPqOoHq_TglB-t1qJXfHBWUqjf3pD3l9wlp1-rx2JOAa2fZ4g-rWjY0HPORs50lfYXqc0JMfu9WXI4QT4bRs3WsjmaS8tma9lQaWrL1fbuaQOghXmfIdqA_7x8lFIItV3y4aLz9d3fwWeDNvhovQvZ22JcCv9f9BfJAJdK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642217219</pqid></control><display><type>article</type><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fleming, Robert A. ; Zou, Min</creator><creatorcontrib>Fleming, Robert A. ; Zou, Min</creatorcontrib><description>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.05.068</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biocompatibility ; Colloidal silica nanoparticle ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Nanostructure ; Physics ; Roughness ; Silicon dioxide ; Stability ; Superhydrophilic ; Superhydrophobic ; Surgical implants ; Titanium ; Wetting</subject><ispartof>Applied surface science, 2013-09, Vol.280, p.820-827</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</citedby><cites>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2013.05.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27553383$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, Robert A.</creatorcontrib><creatorcontrib>Zou, Min</creatorcontrib><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><title>Applied surface science</title><description>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</description><subject>Biocompatibility</subject><subject>Colloidal silica nanoparticle</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Roughness</subject><subject>Silicon dioxide</subject><subject>Stability</subject><subject>Superhydrophilic</subject><subject>Superhydrophobic</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wetting</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UEuLFDEQDovCjqv_wENfBC_dm0enO7kIsqi7sOBBPYfqJONk6EnaVFqZf2-aWYS9eCr4XlX1EfKW0Y5RNtweO1hwRdtxykRHZUcHdUV2TI2ilVL1L8iuynTbC8GvySvEI6WMV3ZH1m9hDhaaCDEtkEuws28nQO-afZhP2KTYlFAghvXU4DphyVA8Nn9COTRzij_b4vPGLD4fzi6n5bAFNhDdMzBNFcQCU2XL-TV5uYcZ_ZuneUN-fP70_e6-ffz65eHu42NrxaBLa0c3Mm7dpIVmdBJKKnBKcs0cUG17zmjPqOoHq_TglB-t1qJXfHBWUqjf3pD3l9wlp1-rx2JOAa2fZ4g-rWjY0HPORs50lfYXqc0JMfu9WXI4QT4bRs3WsjmaS8tma9lQaWrL1fbuaQOghXmfIdqA_7x8lFIItV3y4aLz9d3fwWeDNvhovQvZ22JcCv9f9BfJAJdK</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Fleming, Robert A.</creator><creator>Zou, Min</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><author>Fleming, Robert A. ; Zou, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Colloidal silica nanoparticle</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Roughness</topic><topic>Silicon dioxide</topic><topic>Stability</topic><topic>Superhydrophilic</topic><topic>Superhydrophobic</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Robert A.</creatorcontrib><creatorcontrib>Zou, Min</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Robert A.</au><au>Zou, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</atitle><jtitle>Applied surface science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>280</volume><spage>820</spage><epage>827</epage><pages>820-827</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.05.068</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2013-09, Vol.280, p.820-827
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1642217219
source Elsevier ScienceDirect Journals Complete
subjects Biocompatibility
Colloidal silica nanoparticle
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Nanostructure
Physics
Roughness
Silicon dioxide
Stability
Superhydrophilic
Superhydrophobic
Surgical implants
Titanium
Wetting
title Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20nanoparticle-based%20films%20on%20titanium%20substrates%20with%20long-term%20superhydrophilic%20and%20superhydrophobic%20stability&rft.jtitle=Applied%20surface%20science&rft.au=Fleming,%20Robert%20A.&rft.date=2013-09-01&rft.volume=280&rft.spage=820&rft.epage=827&rft.pages=820-827&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.05.068&rft_dat=%3Cproquest_cross%3E1642217219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642217219&rft_id=info:pmid/&rft_els_id=S0169433213009951&rfr_iscdi=true