Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability
•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months. We r...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2013-09, Vol.280, p.820-827 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | |
container_start_page | 820 |
container_title | Applied surface science |
container_volume | 280 |
creator | Fleming, Robert A. Zou, Min |
description | •Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months.
We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used. |
doi_str_mv | 10.1016/j.apsusc.2013.05.068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642217219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213009951</els_id><sourcerecordid>1642217219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</originalsourceid><addsrcrecordid>eNp9UEuLFDEQDovCjqv_wENfBC_dm0enO7kIsqi7sOBBPYfqJONk6EnaVFqZf2-aWYS9eCr4XlX1EfKW0Y5RNtweO1hwRdtxykRHZUcHdUV2TI2ilVL1L8iuynTbC8GvySvEI6WMV3ZH1m9hDhaaCDEtkEuws28nQO-afZhP2KTYlFAghvXU4DphyVA8Nn9COTRzij_b4vPGLD4fzi6n5bAFNhDdMzBNFcQCU2XL-TV5uYcZ_ZuneUN-fP70_e6-ffz65eHu42NrxaBLa0c3Mm7dpIVmdBJKKnBKcs0cUG17zmjPqOoHq_TglB-t1qJXfHBWUqjf3pD3l9wlp1-rx2JOAa2fZ4g-rWjY0HPORs50lfYXqc0JMfu9WXI4QT4bRs3WsjmaS8tma9lQaWrL1fbuaQOghXmfIdqA_7x8lFIItV3y4aLz9d3fwWeDNvhovQvZ22JcCv9f9BfJAJdK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642217219</pqid></control><display><type>article</type><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fleming, Robert A. ; Zou, Min</creator><creatorcontrib>Fleming, Robert A. ; Zou, Min</creatorcontrib><description>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months.
We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.05.068</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biocompatibility ; Colloidal silica nanoparticle ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Nanostructure ; Physics ; Roughness ; Silicon dioxide ; Stability ; Superhydrophilic ; Superhydrophobic ; Surgical implants ; Titanium ; Wetting</subject><ispartof>Applied surface science, 2013-09, Vol.280, p.820-827</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</citedby><cites>FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2013.05.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27553383$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, Robert A.</creatorcontrib><creatorcontrib>Zou, Min</creatorcontrib><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><title>Applied surface science</title><description>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months.
We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</description><subject>Biocompatibility</subject><subject>Colloidal silica nanoparticle</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Roughness</subject><subject>Silicon dioxide</subject><subject>Stability</subject><subject>Superhydrophilic</subject><subject>Superhydrophobic</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wetting</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UEuLFDEQDovCjqv_wENfBC_dm0enO7kIsqi7sOBBPYfqJONk6EnaVFqZf2-aWYS9eCr4XlX1EfKW0Y5RNtweO1hwRdtxykRHZUcHdUV2TI2ilVL1L8iuynTbC8GvySvEI6WMV3ZH1m9hDhaaCDEtkEuws28nQO-afZhP2KTYlFAghvXU4DphyVA8Nn9COTRzij_b4vPGLD4fzi6n5bAFNhDdMzBNFcQCU2XL-TV5uYcZ_ZuneUN-fP70_e6-ffz65eHu42NrxaBLa0c3Mm7dpIVmdBJKKnBKcs0cUG17zmjPqOoHq_TglB-t1qJXfHBWUqjf3pD3l9wlp1-rx2JOAa2fZ4g-rWjY0HPORs50lfYXqc0JMfu9WXI4QT4bRs3WsjmaS8tma9lQaWrL1fbuaQOghXmfIdqA_7x8lFIItV3y4aLz9d3fwWeDNvhovQvZ22JcCv9f9BfJAJdK</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Fleming, Robert A.</creator><creator>Zou, Min</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</title><author>Fleming, Robert A. ; Zou, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7d712cdb93910b3858ad85291da09c4210410846c896d8e7c9934826dc50a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Colloidal silica nanoparticle</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Roughness</topic><topic>Silicon dioxide</topic><topic>Stability</topic><topic>Superhydrophilic</topic><topic>Superhydrophobic</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Robert A.</creatorcontrib><creatorcontrib>Zou, Min</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Robert A.</au><au>Zou, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability</atitle><jtitle>Applied surface science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>280</volume><spage>820</spage><epage>827</epage><pages>820-827</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•Superhydrophilic and superhydrophobic surfaces were produced on titanium substrates.•The surfaces were fabricated using simple methods.•Both surfaces display stable wetting properties under multiple wetting/de-wetting cycles.•The superhydrophilic surface remains superhydrophilic for 25 months.
We report the fabrication of stable superhydrophilic and superhydrophobic surfaces on titanium substrates using simple methods. Sandblasting the titanium surface to generate microscale roughness, followed by dip-coating in a colloidal silica nanoparticle solution to generate nanoscale roughness and a hydrophilic surface chemistry, produces a superhydrophilic surface. Further chemical modification with a several-nanometer-thick low surface energy fluorinated carbon film renders the surface superhydrophobic. The wettability of these superhydrophilic and superhydrophobic surfaces display a high degree of stability, as both surfaces retain their wetting properties for at least 54 days under multiple wetting/de-wetting cycles. Furthermore, the superhydrophilic surfaces retain their wetting properties in excess of 25 months after storage in ambient atmosphere. Due to their long-term wetting stability and ease of fabrication, these surfaces have potential applications in a variety of fields, including biomedical fields where titanium is widely used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.05.068</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2013-09, Vol.280, p.820-827 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642217219 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Biocompatibility Colloidal silica nanoparticle Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Nanostructure Physics Roughness Silicon dioxide Stability Superhydrophilic Superhydrophobic Surgical implants Titanium Wetting |
title | Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20nanoparticle-based%20films%20on%20titanium%20substrates%20with%20long-term%20superhydrophilic%20and%20superhydrophobic%20stability&rft.jtitle=Applied%20surface%20science&rft.au=Fleming,%20Robert%20A.&rft.date=2013-09-01&rft.volume=280&rft.spage=820&rft.epage=827&rft.pages=820-827&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.05.068&rft_dat=%3Cproquest_cross%3E1642217219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642217219&rft_id=info:pmid/&rft_els_id=S0169433213009951&rfr_iscdi=true |