Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids

In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2014-07, Vol.185 (7), p.2008-2019
Hauptverfasser: Gowrisankar, S., Natesan, Srinivasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2019
container_issue 7
container_start_page 2008
container_title Computer physics communications
container_volume 185
creator Gowrisankar, S.
Natesan, Srinivasan
description In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.
doi_str_mv 10.1016/j.cpc.2014.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465514001271</els_id><sourcerecordid>1642216932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFCEBb5x8QG465jLr1ozmRU7BJLbBYDDJWejR4_SiGY2l0YJv-YDc8of-ksisz4GGbuiqoqoY-yRgL0B0F4e9Xe2-BiH3UAbkG7YTQz9W9SjlW7YDEFDJrm3P2PuUDgDQ92OzY3_ug8lp40ueMZLVnif7C2fkU4g80fKQvY7-ia8YtxwNOm7DckS7UVief_91NE05lZuvOmoTPFlOC22kffmakBen41N11D4jX2MwHufECxwfMzlKWySTt6L6EMmlD-zdpH3Cj6_7nP38_u3H5XV1e3d1c_n1trJNA1uFBvqhNdYUO9qMtuuMMG4AKQfoR2kaOzmhW2gbK0TdOjCdHrratG6Ypkbq5px9PukWR48Z06ZmSha91wuGnJToZF2LbmzqAhUnqI0hpYiTWiPNJZMSoF6aVwdVmlcvzSsoA7Jwvpw4WDIcCaNKlnCx6CiW5pQL9B_2Pzs9kxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642216932</pqid></control><display><type>article</type><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><source>Elsevier ScienceDirect Journals</source><creator>Gowrisankar, S. ; Natesan, Srinivasan</creator><creatorcontrib>Gowrisankar, S. ; Natesan, Srinivasan</creatorcontrib><description>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2014.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive grid ; Boundary layers ; Computer simulation ; Derivatives ; Equidistribution grid ; Finite difference method ; Mathematical analysis ; Mathematical models ; Monitors ; Nonuniform ; Singularly perturbed parabolic problem ; Truncation errors ; Uniform convergence ; Upwind finite difference scheme</subject><ispartof>Computer physics communications, 2014-07, Vol.185 (7), p.2008-2019</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</citedby><cites>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465514001271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gowrisankar, S.</creatorcontrib><creatorcontrib>Natesan, Srinivasan</creatorcontrib><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><title>Computer physics communications</title><description>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</description><subject>Adaptive grid</subject><subject>Boundary layers</subject><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Equidistribution grid</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monitors</subject><subject>Nonuniform</subject><subject>Singularly perturbed parabolic problem</subject><subject>Truncation errors</subject><subject>Uniform convergence</subject><subject>Upwind finite difference scheme</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFCEBb5x8QG465jLr1ozmRU7BJLbBYDDJWejR4_SiGY2l0YJv-YDc8of-ksisz4GGbuiqoqoY-yRgL0B0F4e9Xe2-BiH3UAbkG7YTQz9W9SjlW7YDEFDJrm3P2PuUDgDQ92OzY3_ug8lp40ueMZLVnif7C2fkU4g80fKQvY7-ia8YtxwNOm7DckS7UVief_91NE05lZuvOmoTPFlOC22kffmakBen41N11D4jX2MwHufECxwfMzlKWySTt6L6EMmlD-zdpH3Cj6_7nP38_u3H5XV1e3d1c_n1trJNA1uFBvqhNdYUO9qMtuuMMG4AKQfoR2kaOzmhW2gbK0TdOjCdHrratG6Ypkbq5px9PukWR48Z06ZmSha91wuGnJToZF2LbmzqAhUnqI0hpYiTWiPNJZMSoF6aVwdVmlcvzSsoA7Jwvpw4WDIcCaNKlnCx6CiW5pQL9B_2Pzs9kxU</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Gowrisankar, S.</creator><creator>Natesan, Srinivasan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><author>Gowrisankar, S. ; Natesan, Srinivasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive grid</topic><topic>Boundary layers</topic><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Equidistribution grid</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monitors</topic><topic>Nonuniform</topic><topic>Singularly perturbed parabolic problem</topic><topic>Truncation errors</topic><topic>Uniform convergence</topic><topic>Upwind finite difference scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowrisankar, S.</creatorcontrib><creatorcontrib>Natesan, Srinivasan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowrisankar, S.</au><au>Natesan, Srinivasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</atitle><jtitle>Computer physics communications</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>185</volume><issue>7</issue><spage>2008</spage><epage>2019</epage><pages>2008-2019</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2014.04.004</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2014-07, Vol.185 (7), p.2008-2019
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1642216932
source Elsevier ScienceDirect Journals
subjects Adaptive grid
Boundary layers
Computer simulation
Derivatives
Equidistribution grid
Finite difference method
Mathematical analysis
Mathematical models
Monitors
Nonuniform
Singularly perturbed parabolic problem
Truncation errors
Uniform convergence
Upwind finite difference scheme
title Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20numerical%20scheme%20for%20singularly%20perturbed%20convection%E2%80%93diffusion%20parabolic%20initial%E2%80%93boundary-value%20problems%20on%20equidistributed%20grids&rft.jtitle=Computer%20physics%20communications&rft.au=Gowrisankar,%20S.&rft.date=2014-07-01&rft.volume=185&rft.issue=7&rft.spage=2008&rft.epage=2019&rft.pages=2008-2019&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2014.04.004&rft_dat=%3Cproquest_cross%3E1642216932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642216932&rft_id=info:pmid/&rft_els_id=S0010465514001271&rfr_iscdi=true