Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids
In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2014-07, Vol.185 (7), p.2008-2019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2019 |
---|---|
container_issue | 7 |
container_start_page | 2008 |
container_title | Computer physics communications |
container_volume | 185 |
creator | Gowrisankar, S. Natesan, Srinivasan |
description | In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results. |
doi_str_mv | 10.1016/j.cpc.2014.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642216932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465514001271</els_id><sourcerecordid>1642216932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFCEBb5x8QG465jLr1ozmRU7BJLbBYDDJWejR4_SiGY2l0YJv-YDc8of-ksisz4GGbuiqoqoY-yRgL0B0F4e9Xe2-BiH3UAbkG7YTQz9W9SjlW7YDEFDJrm3P2PuUDgDQ92OzY3_ug8lp40ueMZLVnif7C2fkU4g80fKQvY7-ia8YtxwNOm7DckS7UVief_91NE05lZuvOmoTPFlOC22kffmakBen41N11D4jX2MwHufECxwfMzlKWySTt6L6EMmlD-zdpH3Cj6_7nP38_u3H5XV1e3d1c_n1trJNA1uFBvqhNdYUO9qMtuuMMG4AKQfoR2kaOzmhW2gbK0TdOjCdHrratG6Ypkbq5px9PukWR48Z06ZmSha91wuGnJToZF2LbmzqAhUnqI0hpYiTWiPNJZMSoF6aVwdVmlcvzSsoA7Jwvpw4WDIcCaNKlnCx6CiW5pQL9B_2Pzs9kxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642216932</pqid></control><display><type>article</type><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><source>Elsevier ScienceDirect Journals</source><creator>Gowrisankar, S. ; Natesan, Srinivasan</creator><creatorcontrib>Gowrisankar, S. ; Natesan, Srinivasan</creatorcontrib><description>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2014.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive grid ; Boundary layers ; Computer simulation ; Derivatives ; Equidistribution grid ; Finite difference method ; Mathematical analysis ; Mathematical models ; Monitors ; Nonuniform ; Singularly perturbed parabolic problem ; Truncation errors ; Uniform convergence ; Upwind finite difference scheme</subject><ispartof>Computer physics communications, 2014-07, Vol.185 (7), p.2008-2019</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</citedby><cites>FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465514001271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gowrisankar, S.</creatorcontrib><creatorcontrib>Natesan, Srinivasan</creatorcontrib><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><title>Computer physics communications</title><description>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</description><subject>Adaptive grid</subject><subject>Boundary layers</subject><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Equidistribution grid</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monitors</subject><subject>Nonuniform</subject><subject>Singularly perturbed parabolic problem</subject><subject>Truncation errors</subject><subject>Uniform convergence</subject><subject>Upwind finite difference scheme</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFCEBb5x8QG465jLr1ozmRU7BJLbBYDDJWejR4_SiGY2l0YJv-YDc8of-ksisz4GGbuiqoqoY-yRgL0B0F4e9Xe2-BiH3UAbkG7YTQz9W9SjlW7YDEFDJrm3P2PuUDgDQ92OzY3_ug8lp40ueMZLVnif7C2fkU4g80fKQvY7-ia8YtxwNOm7DckS7UVief_91NE05lZuvOmoTPFlOC22kffmakBen41N11D4jX2MwHufECxwfMzlKWySTt6L6EMmlD-zdpH3Cj6_7nP38_u3H5XV1e3d1c_n1trJNA1uFBvqhNdYUO9qMtuuMMG4AKQfoR2kaOzmhW2gbK0TdOjCdHrratG6Ypkbq5px9PukWR48Z06ZmSha91wuGnJToZF2LbmzqAhUnqI0hpYiTWiPNJZMSoF6aVwdVmlcvzSsoA7Jwvpw4WDIcCaNKlnCx6CiW5pQL9B_2Pzs9kxU</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Gowrisankar, S.</creator><creator>Natesan, Srinivasan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</title><author>Gowrisankar, S. ; Natesan, Srinivasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-eb0785bcbbedab9c66b1bd804480794b3cfd1a5053c1125d0b6a862b5d8ff34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive grid</topic><topic>Boundary layers</topic><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Equidistribution grid</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monitors</topic><topic>Nonuniform</topic><topic>Singularly perturbed parabolic problem</topic><topic>Truncation errors</topic><topic>Uniform convergence</topic><topic>Upwind finite difference scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowrisankar, S.</creatorcontrib><creatorcontrib>Natesan, Srinivasan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowrisankar, S.</au><au>Natesan, Srinivasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids</atitle><jtitle>Computer physics communications</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>185</volume><issue>7</issue><spage>2008</spage><epage>2019</epage><pages>2008-2019</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this article, we study the numerical solution of singularly perturbed parabolic convection–diffusion problems exhibiting regular boundary layers. To solve these problems, we use the classical upwind finite difference scheme on layer-adapted nonuniform meshes. The nonuniform meshes are obtained by equidistributing a positive monitor function, which depends on the second-order spatial derivative of the singular component of the solution. The truncation error and the stability analysis are obtained. Parameter-uniform error estimates are derived for the numerical solution. Semilinear IBVPs are also solved. Numerical experiments are carried out to support the theoretical results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2014.04.004</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2014-07, Vol.185 (7), p.2008-2019 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642216932 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive grid Boundary layers Computer simulation Derivatives Equidistribution grid Finite difference method Mathematical analysis Mathematical models Monitors Nonuniform Singularly perturbed parabolic problem Truncation errors Uniform convergence Upwind finite difference scheme |
title | Robust numerical scheme for singularly perturbed convection–diffusion parabolic initial–boundary-value problems on equidistributed grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20numerical%20scheme%20for%20singularly%20perturbed%20convection%E2%80%93diffusion%20parabolic%20initial%E2%80%93boundary-value%20problems%20on%20equidistributed%20grids&rft.jtitle=Computer%20physics%20communications&rft.au=Gowrisankar,%20S.&rft.date=2014-07-01&rft.volume=185&rft.issue=7&rft.spage=2008&rft.epage=2019&rft.pages=2008-2019&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2014.04.004&rft_dat=%3Cproquest_cross%3E1642216932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642216932&rft_id=info:pmid/&rft_els_id=S0010465514001271&rfr_iscdi=true |