Structural phase states and heat aging of composite electron-beam clad coatings

The effect of heat aging treatment on structural-phase composition and properties of austenitic composite electron-beam clad coatings has been studied. The rational aging schedule has been developed both to retain the austenitic matrix and provide multimodal carbide particles' size distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2013-10, Vol.232, p.775-783
Hauptverfasser: Gnyusov, S.F., Tarasov, S.Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue
container_start_page 775
container_title Surface & coatings technology
container_volume 232
creator Gnyusov, S.F.
Tarasov, S.Yu
description The effect of heat aging treatment on structural-phase composition and properties of austenitic composite electron-beam clad coatings has been studied. The rational aging schedule has been developed both to retain the austenitic matrix and provide multimodal carbide particles' size distribution throughout the clad metal volume. It is shown that vanadium carbide precipitates in manganese- and nickel-containing matrices in the form of isolated equiaxial particles of the mean size 94nm and ~1μm, respectively. Such a structural-phase state becomes feasible by combining the electron-beam cladding and heat treatment conditions. Wear resistance of coatings with multi-modal carbide size distribution has improved as compared to that of the non-aged coatings. •We study multi-pass electron beam composite coatings on low carbon steel substrates.•We found a multimodal size distribution of carbide particles in the coatings.•Thermocycling in cladding facilitates precipitation of carbides from austenite matrix.•Wear resistance is improved by extra aging the composite coatings.
doi_str_mv 10.1016/j.surfcoat.2013.06.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642214501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897213006105</els_id><sourcerecordid>1642214501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-fdf9aa4eb7dcf9a65a0c159447fc2db90d0b9f73d69cf823da1c8df2e14ba2273</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCshHLgm248T1DYT4kyr1AJytjb1uU6VxsR0k3p5UhTOn2cPMrOYj5JqzkjPe3G7LNEZvA-RSMF6VrCmZrk_IjC-ULqpKqlMyY6JWxUIrcU4uUtoyxrjSckZWbzmONo8RerrfQEKaMmRMFAZHNwiZwrob1jR4asNuH1KXkWKPNscwFC3CjtoeHD28n3zpkpx56BNe_eqcfDw9vj-8FMvV8-vD_bKwlaxz4Z3XABJb5ex0NTUwy2stpfJWuFYzx1rtVeUabf1CVA64XTgvkMsWhFDVnNwce_cxfI6Ystl1yWLfw4BhTIY3Uggu6wnInDRHq40hpYje7GO3g_htODMHgmZr_giaA0HDGjMRnIJ3xyBOQ746jCbZDgeLrosTAONC91_FDw1wf4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642214501</pqid></control><display><type>article</type><title>Structural phase states and heat aging of composite electron-beam clad coatings</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gnyusov, S.F. ; Tarasov, S.Yu</creator><creatorcontrib>Gnyusov, S.F. ; Tarasov, S.Yu</creatorcontrib><description>The effect of heat aging treatment on structural-phase composition and properties of austenitic composite electron-beam clad coatings has been studied. The rational aging schedule has been developed both to retain the austenitic matrix and provide multimodal carbide particles' size distribution throughout the clad metal volume. It is shown that vanadium carbide precipitates in manganese- and nickel-containing matrices in the form of isolated equiaxial particles of the mean size 94nm and ~1μm, respectively. Such a structural-phase state becomes feasible by combining the electron-beam cladding and heat treatment conditions. Wear resistance of coatings with multi-modal carbide size distribution has improved as compared to that of the non-aged coatings. •We study multi-pass electron beam composite coatings on low carbon steel substrates.•We found a multimodal size distribution of carbide particles in the coatings.•Thermocycling in cladding facilitates precipitation of carbides from austenite matrix.•Wear resistance is improved by extra aging the composite coatings.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2013.06.095</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Austenitic steel ; Carbides ; Cladding ; Coatings ; Composite coating ; Electron beam cladding ; Particle size distribution ; Particulate composites ; Precipitates ; Precipitation ; Thermal cycling ; Vanadium carbide ; Wear resistance</subject><ispartof>Surface &amp; coatings technology, 2013-10, Vol.232, p.775-783</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-fdf9aa4eb7dcf9a65a0c159447fc2db90d0b9f73d69cf823da1c8df2e14ba2273</citedby><cites>FETCH-LOGICAL-c345t-fdf9aa4eb7dcf9a65a0c159447fc2db90d0b9f73d69cf823da1c8df2e14ba2273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2013.06.095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gnyusov, S.F.</creatorcontrib><creatorcontrib>Tarasov, S.Yu</creatorcontrib><title>Structural phase states and heat aging of composite electron-beam clad coatings</title><title>Surface &amp; coatings technology</title><description>The effect of heat aging treatment on structural-phase composition and properties of austenitic composite electron-beam clad coatings has been studied. The rational aging schedule has been developed both to retain the austenitic matrix and provide multimodal carbide particles' size distribution throughout the clad metal volume. It is shown that vanadium carbide precipitates in manganese- and nickel-containing matrices in the form of isolated equiaxial particles of the mean size 94nm and ~1μm, respectively. Such a structural-phase state becomes feasible by combining the electron-beam cladding and heat treatment conditions. Wear resistance of coatings with multi-modal carbide size distribution has improved as compared to that of the non-aged coatings. •We study multi-pass electron beam composite coatings on low carbon steel substrates.•We found a multimodal size distribution of carbide particles in the coatings.•Thermocycling in cladding facilitates precipitation of carbides from austenite matrix.•Wear resistance is improved by extra aging the composite coatings.</description><subject>Austenitic steel</subject><subject>Carbides</subject><subject>Cladding</subject><subject>Coatings</subject><subject>Composite coating</subject><subject>Electron beam cladding</subject><subject>Particle size distribution</subject><subject>Particulate composites</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Thermal cycling</subject><subject>Vanadium carbide</subject><subject>Wear resistance</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCshHLgm248T1DYT4kyr1AJytjb1uU6VxsR0k3p5UhTOn2cPMrOYj5JqzkjPe3G7LNEZvA-RSMF6VrCmZrk_IjC-ULqpKqlMyY6JWxUIrcU4uUtoyxrjSckZWbzmONo8RerrfQEKaMmRMFAZHNwiZwrob1jR4asNuH1KXkWKPNscwFC3CjtoeHD28n3zpkpx56BNe_eqcfDw9vj-8FMvV8-vD_bKwlaxz4Z3XABJb5ex0NTUwy2stpfJWuFYzx1rtVeUabf1CVA64XTgvkMsWhFDVnNwce_cxfI6Ystl1yWLfw4BhTIY3Uggu6wnInDRHq40hpYje7GO3g_htODMHgmZr_giaA0HDGjMRnIJ3xyBOQ746jCbZDgeLrosTAONC91_FDw1wf4c</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Gnyusov, S.F.</creator><creator>Tarasov, S.Yu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131001</creationdate><title>Structural phase states and heat aging of composite electron-beam clad coatings</title><author>Gnyusov, S.F. ; Tarasov, S.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-fdf9aa4eb7dcf9a65a0c159447fc2db90d0b9f73d69cf823da1c8df2e14ba2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Austenitic steel</topic><topic>Carbides</topic><topic>Cladding</topic><topic>Coatings</topic><topic>Composite coating</topic><topic>Electron beam cladding</topic><topic>Particle size distribution</topic><topic>Particulate composites</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Thermal cycling</topic><topic>Vanadium carbide</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnyusov, S.F.</creatorcontrib><creatorcontrib>Tarasov, S.Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnyusov, S.F.</au><au>Tarasov, S.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural phase states and heat aging of composite electron-beam clad coatings</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>232</volume><spage>775</spage><epage>783</epage><pages>775-783</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The effect of heat aging treatment on structural-phase composition and properties of austenitic composite electron-beam clad coatings has been studied. The rational aging schedule has been developed both to retain the austenitic matrix and provide multimodal carbide particles' size distribution throughout the clad metal volume. It is shown that vanadium carbide precipitates in manganese- and nickel-containing matrices in the form of isolated equiaxial particles of the mean size 94nm and ~1μm, respectively. Such a structural-phase state becomes feasible by combining the electron-beam cladding and heat treatment conditions. Wear resistance of coatings with multi-modal carbide size distribution has improved as compared to that of the non-aged coatings. •We study multi-pass electron beam composite coatings on low carbon steel substrates.•We found a multimodal size distribution of carbide particles in the coatings.•Thermocycling in cladding facilitates precipitation of carbides from austenite matrix.•Wear resistance is improved by extra aging the composite coatings.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2013.06.095</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2013-10, Vol.232, p.775-783
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1642214501
source Access via ScienceDirect (Elsevier)
subjects Austenitic steel
Carbides
Cladding
Coatings
Composite coating
Electron beam cladding
Particle size distribution
Particulate composites
Precipitates
Precipitation
Thermal cycling
Vanadium carbide
Wear resistance
title Structural phase states and heat aging of composite electron-beam clad coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20phase%20states%20and%20heat%20aging%20of%20composite%20electron-beam%20clad%20coatings&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Gnyusov,%20S.F.&rft.date=2013-10-01&rft.volume=232&rft.spage=775&rft.epage=783&rft.pages=775-783&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2013.06.095&rft_dat=%3Cproquest_cross%3E1642214501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642214501&rft_id=info:pmid/&rft_els_id=S0257897213006105&rfr_iscdi=true