Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission
Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observatio...
Gespeichert in:
Veröffentlicht in: | Remote Sensing of Environment 2013-08, Vol.135, p.77-91 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | Remote Sensing of Environment |
container_volume | 135 |
creator | Siegel, D.A. Behrenfeld, M.J. Maritorena, S. McClain, C.R. Antoine, D. Bailey, S.W. Bontempi, P.S. Boss, E.S. Dierssen, H.M. Doney, S.C. Eplee, R.E. Evans, R.H. Feldman, G.C. Fields, E. Franz, B.A. Kuring, N.A. Mengelt, C. Nelson, N.B. Patt, F.S. Robinson, W.D. Sarmiento, J.L. Swan, C.M. Werdell, P.J. Westberry, T.K. Wilding, J.G. Yoder, J.A. |
description | Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
•Evaluation of the SeaWiFS climate data record of chlorophyll concentrations.•Colored dissolved organic matter obfuscates the empirical retrieval of chlorophyll.•Global trends and patterns depend on the choice of bio-optical model used.•Chlorophyll changes reflects both phytoplankton biomass and physiological changes.•The SeaWiFS mission laid out a blueprint for future satellite ocean color missions. |
doi_str_mv | 10.1016/j.rse.2013.03.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642214134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425713001041</els_id><sourcerecordid>1627988051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-b2efadf464ccb060a253c9e8d7451f19ede7a8127108af8a7fdd11c55397ce9b3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1poNu0P6A3XwrtwVuNPiyZnkJImsBCaT7oUWjlUVZb29pqnMD--2rZkGMoCEaIZ955NW9VfQK2BAbtt-0yEy45A7Fk5XD1plqA0V3DNJNvqwVjQjaSK_2uek-0ZQyU0bCoft3gQ0yTG-o51Q9DWpebI0KiEaeZ6hTq3WY_p93gpj9zmup-P7kxeqpDTmM9b7C-Rfc7Xt7WYyQqUh-qk-AGwo_P9bS6v7y4O79qVj9_XJ-frRqvtJ6bNcfg-iBb6f2atcxxJXyHptdSQYAOe9TOANfAjAvG6dD3AF4p0WmP3VqcVl-Puhs32F2Oo8t7m1y0V2cre3hjQjHe8u4JCvvlyO5y-vuINNti1uNQPoXpkSy0knOQIOR_oFx3xjB1UIUj6nMiyhhebACzh1Ts1pZU7CGV4saWVErP52d5R94NIbvJR3pp5FoK0wpTuO9HDssKnyJmSz7i5LGPGf1s-xRfmfIPdCShhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627988051</pqid></control><display><type>article</type><title>Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Siegel, D.A. ; Behrenfeld, M.J. ; Maritorena, S. ; McClain, C.R. ; Antoine, D. ; Bailey, S.W. ; Bontempi, P.S. ; Boss, E.S. ; Dierssen, H.M. ; Doney, S.C. ; Eplee, R.E. ; Evans, R.H. ; Feldman, G.C. ; Fields, E. ; Franz, B.A. ; Kuring, N.A. ; Mengelt, C. ; Nelson, N.B. ; Patt, F.S. ; Robinson, W.D. ; Sarmiento, J.L. ; Swan, C.M. ; Werdell, P.J. ; Westberry, T.K. ; Wilding, J.G. ; Yoder, J.A.</creator><creatorcontrib>Siegel, D.A. ; Behrenfeld, M.J. ; Maritorena, S. ; McClain, C.R. ; Antoine, D. ; Bailey, S.W. ; Bontempi, P.S. ; Boss, E.S. ; Dierssen, H.M. ; Doney, S.C. ; Eplee, R.E. ; Evans, R.H. ; Feldman, G.C. ; Fields, E. ; Franz, B.A. ; Kuring, N.A. ; Mengelt, C. ; Nelson, N.B. ; Patt, F.S. ; Robinson, W.D. ; Sarmiento, J.L. ; Swan, C.M. ; Werdell, P.J. ; Westberry, T.K. ; Wilding, J.G. ; Yoder, J.A.</creatorcontrib><description>Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
•Evaluation of the SeaWiFS climate data record of chlorophyll concentrations.•Colored dissolved organic matter obfuscates the empirical retrieval of chlorophyll.•Global trends and patterns depend on the choice of bio-optical model used.•Chlorophyll changes reflects both phytoplankton biomass and physiological changes.•The SeaWiFS mission laid out a blueprint for future satellite ocean color missions.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2013.03.025</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Assessments ; Biological and medical sciences ; Biomass ; Chlorophylls ; Colored dissolved organic matter ; Decadal trends ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Marine geology ; Nutrients ; Ocean color ; Oceanography ; Oceans ; Phytoplankton ; Regional ; Retrieval ; Sciences of the Universe ; SeaWiFS ; Teledetection and vegetation maps</subject><ispartof>Remote Sensing of Environment, 2013-08, Vol.135, p.77-91</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-b2efadf464ccb060a253c9e8d7451f19ede7a8127108af8a7fdd11c55397ce9b3</citedby><cites>FETCH-LOGICAL-c577t-b2efadf464ccb060a253c9e8d7451f19ede7a8127108af8a7fdd11c55397ce9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425713001041$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27438638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03502629$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegel, D.A.</creatorcontrib><creatorcontrib>Behrenfeld, M.J.</creatorcontrib><creatorcontrib>Maritorena, S.</creatorcontrib><creatorcontrib>McClain, C.R.</creatorcontrib><creatorcontrib>Antoine, D.</creatorcontrib><creatorcontrib>Bailey, S.W.</creatorcontrib><creatorcontrib>Bontempi, P.S.</creatorcontrib><creatorcontrib>Boss, E.S.</creatorcontrib><creatorcontrib>Dierssen, H.M.</creatorcontrib><creatorcontrib>Doney, S.C.</creatorcontrib><creatorcontrib>Eplee, R.E.</creatorcontrib><creatorcontrib>Evans, R.H.</creatorcontrib><creatorcontrib>Feldman, G.C.</creatorcontrib><creatorcontrib>Fields, E.</creatorcontrib><creatorcontrib>Franz, B.A.</creatorcontrib><creatorcontrib>Kuring, N.A.</creatorcontrib><creatorcontrib>Mengelt, C.</creatorcontrib><creatorcontrib>Nelson, N.B.</creatorcontrib><creatorcontrib>Patt, F.S.</creatorcontrib><creatorcontrib>Robinson, W.D.</creatorcontrib><creatorcontrib>Sarmiento, J.L.</creatorcontrib><creatorcontrib>Swan, C.M.</creatorcontrib><creatorcontrib>Werdell, P.J.</creatorcontrib><creatorcontrib>Westberry, T.K.</creatorcontrib><creatorcontrib>Wilding, J.G.</creatorcontrib><creatorcontrib>Yoder, J.A.</creatorcontrib><title>Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission</title><title>Remote Sensing of Environment</title><description>Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
•Evaluation of the SeaWiFS climate data record of chlorophyll concentrations.•Colored dissolved organic matter obfuscates the empirical retrieval of chlorophyll.•Global trends and patterns depend on the choice of bio-optical model used.•Chlorophyll changes reflects both phytoplankton biomass and physiological changes.•The SeaWiFS mission laid out a blueprint for future satellite ocean color missions.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Assessments</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Chlorophylls</subject><subject>Colored dissolved organic matter</subject><subject>Decadal trends</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Marine geology</subject><subject>Nutrients</subject><subject>Ocean color</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Phytoplankton</subject><subject>Regional</subject><subject>Retrieval</subject><subject>Sciences of the Universe</subject><subject>SeaWiFS</subject><subject>Teledetection and vegetation maps</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhk1poNu0P6A3XwrtwVuNPiyZnkJImsBCaT7oUWjlUVZb29pqnMD--2rZkGMoCEaIZ955NW9VfQK2BAbtt-0yEy45A7Fk5XD1plqA0V3DNJNvqwVjQjaSK_2uek-0ZQyU0bCoft3gQ0yTG-o51Q9DWpebI0KiEaeZ6hTq3WY_p93gpj9zmup-P7kxeqpDTmM9b7C-Rfc7Xt7WYyQqUh-qk-AGwo_P9bS6v7y4O79qVj9_XJ-frRqvtJ6bNcfg-iBb6f2atcxxJXyHptdSQYAOe9TOANfAjAvG6dD3AF4p0WmP3VqcVl-Puhs32F2Oo8t7m1y0V2cre3hjQjHe8u4JCvvlyO5y-vuINNti1uNQPoXpkSy0knOQIOR_oFx3xjB1UIUj6nMiyhhebACzh1Ts1pZU7CGV4saWVErP52d5R94NIbvJR3pp5FoK0wpTuO9HDssKnyJmSz7i5LGPGf1s-xRfmfIPdCShhw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Siegel, D.A.</creator><creator>Behrenfeld, M.J.</creator><creator>Maritorena, S.</creator><creator>McClain, C.R.</creator><creator>Antoine, D.</creator><creator>Bailey, S.W.</creator><creator>Bontempi, P.S.</creator><creator>Boss, E.S.</creator><creator>Dierssen, H.M.</creator><creator>Doney, S.C.</creator><creator>Eplee, R.E.</creator><creator>Evans, R.H.</creator><creator>Feldman, G.C.</creator><creator>Fields, E.</creator><creator>Franz, B.A.</creator><creator>Kuring, N.A.</creator><creator>Mengelt, C.</creator><creator>Nelson, N.B.</creator><creator>Patt, F.S.</creator><creator>Robinson, W.D.</creator><creator>Sarmiento, J.L.</creator><creator>Swan, C.M.</creator><creator>Werdell, P.J.</creator><creator>Westberry, T.K.</creator><creator>Wilding, J.G.</creator><creator>Yoder, J.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20130801</creationdate><title>Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission</title><author>Siegel, D.A. ; Behrenfeld, M.J. ; Maritorena, S. ; McClain, C.R. ; Antoine, D. ; Bailey, S.W. ; Bontempi, P.S. ; Boss, E.S. ; Dierssen, H.M. ; Doney, S.C. ; Eplee, R.E. ; Evans, R.H. ; Feldman, G.C. ; Fields, E. ; Franz, B.A. ; Kuring, N.A. ; Mengelt, C. ; Nelson, N.B. ; Patt, F.S. ; Robinson, W.D. ; Sarmiento, J.L. ; Swan, C.M. ; Werdell, P.J. ; Westberry, T.K. ; Wilding, J.G. ; Yoder, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-b2efadf464ccb060a253c9e8d7451f19ede7a8127108af8a7fdd11c55397ce9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Assessments</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Chlorophylls</topic><topic>Colored dissolved organic matter</topic><topic>Decadal trends</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Marine geology</topic><topic>Nutrients</topic><topic>Ocean color</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Phytoplankton</topic><topic>Regional</topic><topic>Retrieval</topic><topic>Sciences of the Universe</topic><topic>SeaWiFS</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegel, D.A.</creatorcontrib><creatorcontrib>Behrenfeld, M.J.</creatorcontrib><creatorcontrib>Maritorena, S.</creatorcontrib><creatorcontrib>McClain, C.R.</creatorcontrib><creatorcontrib>Antoine, D.</creatorcontrib><creatorcontrib>Bailey, S.W.</creatorcontrib><creatorcontrib>Bontempi, P.S.</creatorcontrib><creatorcontrib>Boss, E.S.</creatorcontrib><creatorcontrib>Dierssen, H.M.</creatorcontrib><creatorcontrib>Doney, S.C.</creatorcontrib><creatorcontrib>Eplee, R.E.</creatorcontrib><creatorcontrib>Evans, R.H.</creatorcontrib><creatorcontrib>Feldman, G.C.</creatorcontrib><creatorcontrib>Fields, E.</creatorcontrib><creatorcontrib>Franz, B.A.</creatorcontrib><creatorcontrib>Kuring, N.A.</creatorcontrib><creatorcontrib>Mengelt, C.</creatorcontrib><creatorcontrib>Nelson, N.B.</creatorcontrib><creatorcontrib>Patt, F.S.</creatorcontrib><creatorcontrib>Robinson, W.D.</creatorcontrib><creatorcontrib>Sarmiento, J.L.</creatorcontrib><creatorcontrib>Swan, C.M.</creatorcontrib><creatorcontrib>Werdell, P.J.</creatorcontrib><creatorcontrib>Westberry, T.K.</creatorcontrib><creatorcontrib>Wilding, J.G.</creatorcontrib><creatorcontrib>Yoder, J.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Remote Sensing of Environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegel, D.A.</au><au>Behrenfeld, M.J.</au><au>Maritorena, S.</au><au>McClain, C.R.</au><au>Antoine, D.</au><au>Bailey, S.W.</au><au>Bontempi, P.S.</au><au>Boss, E.S.</au><au>Dierssen, H.M.</au><au>Doney, S.C.</au><au>Eplee, R.E.</au><au>Evans, R.H.</au><au>Feldman, G.C.</au><au>Fields, E.</au><au>Franz, B.A.</au><au>Kuring, N.A.</au><au>Mengelt, C.</au><au>Nelson, N.B.</au><au>Patt, F.S.</au><au>Robinson, W.D.</au><au>Sarmiento, J.L.</au><au>Swan, C.M.</au><au>Werdell, P.J.</au><au>Westberry, T.K.</au><au>Wilding, J.G.</au><au>Yoder, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission</atitle><jtitle>Remote Sensing of Environment</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>135</volume><spage>77</spage><epage>91</epage><pages>77-91</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
•Evaluation of the SeaWiFS climate data record of chlorophyll concentrations.•Colored dissolved organic matter obfuscates the empirical retrieval of chlorophyll.•Global trends and patterns depend on the choice of bio-optical model used.•Chlorophyll changes reflects both phytoplankton biomass and physiological changes.•The SeaWiFS mission laid out a blueprint for future satellite ocean color missions.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2013.03.025</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote Sensing of Environment, 2013-08, Vol.135, p.77-91 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642214134 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Animal, plant and microbial ecology Applied geophysics Assessments Biological and medical sciences Biomass Chlorophylls Colored dissolved organic matter Decadal trends Earth Sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics Marine geology Nutrients Ocean color Oceanography Oceans Phytoplankton Regional Retrieval Sciences of the Universe SeaWiFS Teledetection and vegetation maps |
title | Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20to%20global%20assessments%20of%20phytoplankton%20dynamics%20from%20the%20SeaWiFS%20mission&rft.jtitle=Remote%20Sensing%20of%20Environment&rft.au=Siegel,%20D.A.&rft.date=2013-08-01&rft.volume=135&rft.spage=77&rft.epage=91&rft.pages=77-91&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2013.03.025&rft_dat=%3Cproquest_hal_p%3E1627988051%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627988051&rft_id=info:pmid/&rft_els_id=S0034425713001041&rfr_iscdi=true |