Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate

Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2014-10, Vol.404, p.192-198
Hauptverfasser: Koto, Makoto, Watanabe, Masatoshi, Sugawa, Etsuko, Shimizu, Tomohiro, Shingubara, Shoso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue
container_start_page 192
container_title Journal of crystal growth
container_volume 404
creator Koto, Makoto
Watanabe, Masatoshi
Sugawa, Etsuko
Shimizu, Tomohiro
Shingubara, Shoso
description Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon. •The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.
doi_str_mv 10.1016/j.jcrysgro.2014.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642209932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814005211</els_id><sourcerecordid>1642209932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</originalsourceid><addsrcrecordid>eNqFkM1u1TAQhS0EEpfSV6i8QWKTMLbz4-yoyq9UiUW7txx7Qn2V2qnt9CpiwzvwhjxJXW5hy2bmLM6Zo_kIOWNQM2Ddu329N3FL32OoObCmhr4GLp6RHZO9qFoA_pzsyuQV8Ea-JK9S2gOUJIMd-fHBTdOaXPA0rcsSMf3RztN7vYT4--ev2d2tzhaRwuwsvXLUax8OLiItlYd8Q8eNajrqGB1GOuutzBHzAdHTfIP0fKVGZz1vKVPtbekZU44642vyYtJzwtOnfUKuP328vvhSXX77_PXi_LIygvNcNYCtZa3BzjbQCMkEtMLyQQxGWtZ3YGAwnFkpWpA4SmPGqZuY5lbaZpzECXl7PLvEcLdiyurWJYPzrD2GNSnWNZzDMAherN3RamJIKeKkluhuddwUA_UIW-3VX9jqEbaCXhXYJfjmqUMno-cpam9c-pfmspctG6D43h99WP69L7xUMg69QVt4mqxscP-regBCd502</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642209932</pqid></control><display><type>article</type><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</creator><creatorcontrib>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</creatorcontrib><description>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon. •The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.07.023</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Diffusion ; A1. Eutectics ; A1. Growth mechanism ; A1. Nanostructures ; B1. Nanomaterials ; B2. Semiconducting silicon ; Catalysts ; Chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion ; Diffusion barriers ; Diffusion in solids ; Droplets ; Exact sciences and technology ; General and physical chemistry ; General, apparatus ; Gold ; Materials science ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Nucleation ; Physics ; Quantum wires ; Silicon substrates ; Surface physical chemistry ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of crystal growth, 2014-10, Vol.404, p.192-198</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2014.07.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28785190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koto, Makoto</creatorcontrib><creatorcontrib>Watanabe, Masatoshi</creatorcontrib><creatorcontrib>Sugawa, Etsuko</creatorcontrib><creatorcontrib>Shimizu, Tomohiro</creatorcontrib><creatorcontrib>Shingubara, Shoso</creatorcontrib><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><title>Journal of crystal growth</title><description>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon. •The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</description><subject>A1. Diffusion</subject><subject>A1. Eutectics</subject><subject>A1. Growth mechanism</subject><subject>A1. Nanostructures</subject><subject>B1. Nanomaterials</subject><subject>B2. Semiconducting silicon</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion</subject><subject>Diffusion barriers</subject><subject>Diffusion in solids</subject><subject>Droplets</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General, apparatus</subject><subject>Gold</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Silicon substrates</subject><subject>Surface physical chemistry</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1TAQhS0EEpfSV6i8QWKTMLbz4-yoyq9UiUW7txx7Qn2V2qnt9CpiwzvwhjxJXW5hy2bmLM6Zo_kIOWNQM2Ddu329N3FL32OoObCmhr4GLp6RHZO9qFoA_pzsyuQV8Ea-JK9S2gOUJIMd-fHBTdOaXPA0rcsSMf3RztN7vYT4--ev2d2tzhaRwuwsvXLUax8OLiItlYd8Q8eNajrqGB1GOuutzBHzAdHTfIP0fKVGZz1vKVPtbekZU44642vyYtJzwtOnfUKuP328vvhSXX77_PXi_LIygvNcNYCtZa3BzjbQCMkEtMLyQQxGWtZ3YGAwnFkpWpA4SmPGqZuY5lbaZpzECXl7PLvEcLdiyurWJYPzrD2GNSnWNZzDMAherN3RamJIKeKkluhuddwUA_UIW-3VX9jqEbaCXhXYJfjmqUMno-cpam9c-pfmspctG6D43h99WP69L7xUMg69QVt4mqxscP-regBCd502</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>Koto, Makoto</creator><creator>Watanabe, Masatoshi</creator><creator>Sugawa, Etsuko</creator><creator>Shimizu, Tomohiro</creator><creator>Shingubara, Shoso</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141015</creationdate><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><author>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. Diffusion</topic><topic>A1. Eutectics</topic><topic>A1. Growth mechanism</topic><topic>A1. Nanostructures</topic><topic>B1. Nanomaterials</topic><topic>B2. Semiconducting silicon</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion</topic><topic>Diffusion barriers</topic><topic>Diffusion in solids</topic><topic>Droplets</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General, apparatus</topic><topic>Gold</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Silicon substrates</topic><topic>Surface physical chemistry</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koto, Makoto</creatorcontrib><creatorcontrib>Watanabe, Masatoshi</creatorcontrib><creatorcontrib>Sugawa, Etsuko</creatorcontrib><creatorcontrib>Shimizu, Tomohiro</creatorcontrib><creatorcontrib>Shingubara, Shoso</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koto, Makoto</au><au>Watanabe, Masatoshi</au><au>Sugawa, Etsuko</au><au>Shimizu, Tomohiro</au><au>Shingubara, Shoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-10-15</date><risdate>2014</risdate><volume>404</volume><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon. •The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.07.023</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2014-10, Vol.404, p.192-198
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1642209932
source ScienceDirect Journals (5 years ago - present)
subjects A1. Diffusion
A1. Eutectics
A1. Growth mechanism
A1. Nanostructures
B1. Nanomaterials
B2. Semiconducting silicon
Catalysts
Chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diffusion
Diffusion barriers
Diffusion in solids
Droplets
Exact sciences and technology
General and physical chemistry
General, apparatus
Gold
Materials science
Methods of nanofabrication
Nanoscale materials and structures: fabrication and characterization
Nanowires
Nucleation
Physics
Quantum wires
Silicon substrates
Surface physical chemistry
Transport properties of condensed matter (nonelectronic)
title Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20suppression%20in%20vapor%E2%80%93liquid%E2%80%93solid%20Si%20nanowire%20growth%20by%20a%20barrier%20layer%20between%20the%20Au%20catalyst%20and%20substrate&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Koto,%20Makoto&rft.date=2014-10-15&rft.volume=404&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.07.023&rft_dat=%3Cproquest_cross%3E1642209932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642209932&rft_id=info:pmid/&rft_els_id=S0022024814005211&rfr_iscdi=true