Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate
Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2014-10, Vol.404, p.192-198 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | |
container_start_page | 192 |
container_title | Journal of crystal growth |
container_volume | 404 |
creator | Koto, Makoto Watanabe, Masatoshi Sugawa, Etsuko Shimizu, Tomohiro Shingubara, Shoso |
description | Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon.
•The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate. |
doi_str_mv | 10.1016/j.jcrysgro.2014.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642209932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814005211</els_id><sourcerecordid>1642209932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</originalsourceid><addsrcrecordid>eNqFkM1u1TAQhS0EEpfSV6i8QWKTMLbz4-yoyq9UiUW7txx7Qn2V2qnt9CpiwzvwhjxJXW5hy2bmLM6Zo_kIOWNQM2Ddu329N3FL32OoObCmhr4GLp6RHZO9qFoA_pzsyuQV8Ea-JK9S2gOUJIMd-fHBTdOaXPA0rcsSMf3RztN7vYT4--ev2d2tzhaRwuwsvXLUax8OLiItlYd8Q8eNajrqGB1GOuutzBHzAdHTfIP0fKVGZz1vKVPtbekZU44642vyYtJzwtOnfUKuP328vvhSXX77_PXi_LIygvNcNYCtZa3BzjbQCMkEtMLyQQxGWtZ3YGAwnFkpWpA4SmPGqZuY5lbaZpzECXl7PLvEcLdiyurWJYPzrD2GNSnWNZzDMAherN3RamJIKeKkluhuddwUA_UIW-3VX9jqEbaCXhXYJfjmqUMno-cpam9c-pfmspctG6D43h99WP69L7xUMg69QVt4mqxscP-regBCd502</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642209932</pqid></control><display><type>article</type><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</creator><creatorcontrib>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</creatorcontrib><description>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon.
•The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.07.023</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Diffusion ; A1. Eutectics ; A1. Growth mechanism ; A1. Nanostructures ; B1. Nanomaterials ; B2. Semiconducting silicon ; Catalysts ; Chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion ; Diffusion barriers ; Diffusion in solids ; Droplets ; Exact sciences and technology ; General and physical chemistry ; General, apparatus ; Gold ; Materials science ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Nucleation ; Physics ; Quantum wires ; Silicon substrates ; Surface physical chemistry ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of crystal growth, 2014-10, Vol.404, p.192-198</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2014.07.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28785190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koto, Makoto</creatorcontrib><creatorcontrib>Watanabe, Masatoshi</creatorcontrib><creatorcontrib>Sugawa, Etsuko</creatorcontrib><creatorcontrib>Shimizu, Tomohiro</creatorcontrib><creatorcontrib>Shingubara, Shoso</creatorcontrib><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><title>Journal of crystal growth</title><description>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon.
•The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</description><subject>A1. Diffusion</subject><subject>A1. Eutectics</subject><subject>A1. Growth mechanism</subject><subject>A1. Nanostructures</subject><subject>B1. Nanomaterials</subject><subject>B2. Semiconducting silicon</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion</subject><subject>Diffusion barriers</subject><subject>Diffusion in solids</subject><subject>Droplets</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General, apparatus</subject><subject>Gold</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Silicon substrates</subject><subject>Surface physical chemistry</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1TAQhS0EEpfSV6i8QWKTMLbz4-yoyq9UiUW7txx7Qn2V2qnt9CpiwzvwhjxJXW5hy2bmLM6Zo_kIOWNQM2Ddu329N3FL32OoObCmhr4GLp6RHZO9qFoA_pzsyuQV8Ea-JK9S2gOUJIMd-fHBTdOaXPA0rcsSMf3RztN7vYT4--ev2d2tzhaRwuwsvXLUax8OLiItlYd8Q8eNajrqGB1GOuutzBHzAdHTfIP0fKVGZz1vKVPtbekZU44642vyYtJzwtOnfUKuP328vvhSXX77_PXi_LIygvNcNYCtZa3BzjbQCMkEtMLyQQxGWtZ3YGAwnFkpWpA4SmPGqZuY5lbaZpzECXl7PLvEcLdiyurWJYPzrD2GNSnWNZzDMAherN3RamJIKeKkluhuddwUA_UIW-3VX9jqEbaCXhXYJfjmqUMno-cpam9c-pfmspctG6D43h99WP69L7xUMg69QVt4mqxscP-regBCd502</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>Koto, Makoto</creator><creator>Watanabe, Masatoshi</creator><creator>Sugawa, Etsuko</creator><creator>Shimizu, Tomohiro</creator><creator>Shingubara, Shoso</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141015</creationdate><title>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</title><author>Koto, Makoto ; Watanabe, Masatoshi ; Sugawa, Etsuko ; Shimizu, Tomohiro ; Shingubara, Shoso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-40e5d15ce6d4043813053d2939c8d1760c09c21d83508eb8ccbf6f1a2d8d4bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. Diffusion</topic><topic>A1. Eutectics</topic><topic>A1. Growth mechanism</topic><topic>A1. Nanostructures</topic><topic>B1. Nanomaterials</topic><topic>B2. Semiconducting silicon</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion</topic><topic>Diffusion barriers</topic><topic>Diffusion in solids</topic><topic>Droplets</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General, apparatus</topic><topic>Gold</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Silicon substrates</topic><topic>Surface physical chemistry</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koto, Makoto</creatorcontrib><creatorcontrib>Watanabe, Masatoshi</creatorcontrib><creatorcontrib>Sugawa, Etsuko</creatorcontrib><creatorcontrib>Shimizu, Tomohiro</creatorcontrib><creatorcontrib>Shingubara, Shoso</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koto, Makoto</au><au>Watanabe, Masatoshi</au><au>Sugawa, Etsuko</au><au>Shimizu, Tomohiro</au><au>Shingubara, Shoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-10-15</date><risdate>2014</risdate><volume>404</volume><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Nanowires have attracted significant interest because of their unique characteristics. Vapor–liquid–solid (VLS) growth is the standard method for fabricating nanowires and Au is the most commonly used catalyst. However, Au catalyst droplets diffuse over the Si substrate surface with a high migration velocity and agglomerate at relatively low temperatures. In our previous work, we reported a significant improvement in the positioning and diameter distribution of VLS-grown Si nanowires by inserting a diffusion barrier layer and concluded that the barrier layer suppressed the formation of AuSi eutectic droplets and prevented the droplets diffusing on the substrate surface during nucleation. In the present study, we analyzed the nucleation of the Au catalyst and examined its behavior during nucleation. Detailed multidirectional analysis and in situ observations confirmed that the formation and agglomeration of AuSi eutectic droplets was suppressed by the formation of a silicide layer. This because of the higher reaction temperatures between the diffusion barrier and the substrate silicon, and between the catalyst and the diffusion barrier, compared with the reaction between the Au catalyst and substrate silicon.
•The effect of a diffusion barrier layer on VLS nanowire growth is analyzed.•In situ SEM shows the effect of the diffusion barrier during nucleation.•Eutectic phase formation and agglomeration is stopped by silicide layer formation.•Caused by higher reaction temperature of barrier with catalyst and substrate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.07.023</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2014-10, Vol.404, p.192-198 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642209932 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Diffusion A1. Eutectics A1. Growth mechanism A1. Nanostructures B1. Nanomaterials B2. Semiconducting silicon Catalysts Chemistry Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diffusion Diffusion barriers Diffusion in solids Droplets Exact sciences and technology General and physical chemistry General, apparatus Gold Materials science Methods of nanofabrication Nanoscale materials and structures: fabrication and characterization Nanowires Nucleation Physics Quantum wires Silicon substrates Surface physical chemistry Transport properties of condensed matter (nonelectronic) |
title | Diffusion suppression in vapor–liquid–solid Si nanowire growth by a barrier layer between the Au catalyst and substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20suppression%20in%20vapor%E2%80%93liquid%E2%80%93solid%20Si%20nanowire%20growth%20by%20a%20barrier%20layer%20between%20the%20Au%20catalyst%20and%20substrate&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Koto,%20Makoto&rft.date=2014-10-15&rft.volume=404&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.07.023&rft_dat=%3Cproquest_cross%3E1642209932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642209932&rft_id=info:pmid/&rft_els_id=S0022024814005211&rfr_iscdi=true |