Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice
The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous sys...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2014-11, Vol.40 (10), p.3458-3471 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3471 |
---|---|
container_issue | 10 |
container_start_page | 3458 |
container_title | The European journal of neuroscience |
container_volume | 40 |
creator | Horie, Masao Watanabe, Keisuke Bepari, Asim K. Nashimoto, Jun-ichiro Araki, Kimi Sano, Hiromi Chiken, Satomi Nambu, Atsushi Ono, Katsuhiko Ikenaka, Kazuhiro Kakita, Akiyoshi Yamamura, Ken-ichi Takebayashi, Hirohide |
description | The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype.
The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis. |
doi_str_mv | 10.1111/ejn.12711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1641859661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1641859661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3851-b9365931ff4995a447034e12cdba3a25d960446c00fc4ed256f885f63d8c069b3</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EoqWw4AdQNkhs0trxI_YS-oKqKkICwc5yHAe55FHiRNC_x20KeHPHM-da1lwALhEcIn9GZl0OURQjdAT6iDAYCsr4MehDQXHIEXvrgTPn1hBCzgg9Bb2IIo9Q3AdqYl3dbhpblUGVBUo3tgwTW6a2fA_SqlD-qquy8brrTLauqXwVbOqqMV61ap1xQdr1VVC0Trd5VbdF4KeF1eYcnGQqd-bioAPwMps-j-_D5eP8YXy7DC3mFIWJwIwKjLKMCEEVITHExKBIp4nCKqKpYJAQpiHMNDFpRFnGOc0YTrmGTCR4AG66d_3XPlvjGllYp02eq9JUrZOIEcSpYAx59OqAtklhUrmpbaHqrfxdiweuD4ByWuVZrUpt3T_HBSZ-3Z4bddyXzc32b46g3OUifS5yn4ucLlb7wjvCzmFdY77_HKr-kCzGMZWvq7kkd2Q1W0ye5Bj_AL-BjvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641859661</pqid></control><display><type>article</type><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</creator><creatorcontrib>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</creatorcontrib><description>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype.
The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.12711</identifier><identifier>PMID: 25195653</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animals ; autonomic neuropathy ; Biological and medical sciences ; Brain - pathology ; Brain - physiopathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Disease Models, Animal ; dystonia ; Dystonic Disorders - genetics ; Dystonic Disorders - pathology ; Dystonic Disorders - physiopathology ; Dystonin ; Female ; Fundamental and applied biological sciences. Psychology ; Ganglia, Spinal - pathology ; Ganglia, Spinal - physiopathology ; gene trap mutant ; hereditary sensory ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal - physiopathology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; neurodegeneration ; Phenotype ; Protein Isoforms ; Spinal Cord - pathology ; Spinal Cord - physiopathology ; Trigeminal Nerve - pathology ; Trigeminal Nerve - physiopathology ; Vertebrates: nervous system and sense organs</subject><ispartof>The European journal of neuroscience, 2014-11, Vol.40 (10), p.3458-3471</ispartof><rights>2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fejn.12711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fejn.12711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28934711$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25195653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horie, Masao</creatorcontrib><creatorcontrib>Watanabe, Keisuke</creatorcontrib><creatorcontrib>Bepari, Asim K.</creatorcontrib><creatorcontrib>Nashimoto, Jun-ichiro</creatorcontrib><creatorcontrib>Araki, Kimi</creatorcontrib><creatorcontrib>Sano, Hiromi</creatorcontrib><creatorcontrib>Chiken, Satomi</creatorcontrib><creatorcontrib>Nambu, Atsushi</creatorcontrib><creatorcontrib>Ono, Katsuhiko</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Kakita, Akiyoshi</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype.
The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</description><subject>Animals</subject><subject>autonomic neuropathy</subject><subject>Biological and medical sciences</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>dystonia</subject><subject>Dystonic Disorders - genetics</subject><subject>Dystonic Disorders - pathology</subject><subject>Dystonic Disorders - physiopathology</subject><subject>Dystonin</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Spinal - pathology</subject><subject>Ganglia, Spinal - physiopathology</subject><subject>gene trap mutant</subject><subject>hereditary sensory</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurodegeneration</subject><subject>Phenotype</subject><subject>Protein Isoforms</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord - physiopathology</subject><subject>Trigeminal Nerve - pathology</subject><subject>Trigeminal Nerve - physiopathology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkctOwzAQRS0EoqWw4AdQNkhs0trxI_YS-oKqKkICwc5yHAe55FHiRNC_x20KeHPHM-da1lwALhEcIn9GZl0OURQjdAT6iDAYCsr4MehDQXHIEXvrgTPn1hBCzgg9Bb2IIo9Q3AdqYl3dbhpblUGVBUo3tgwTW6a2fA_SqlD-qquy8brrTLauqXwVbOqqMV61ap1xQdr1VVC0Trd5VbdF4KeF1eYcnGQqd-bioAPwMps-j-_D5eP8YXy7DC3mFIWJwIwKjLKMCEEVITHExKBIp4nCKqKpYJAQpiHMNDFpRFnGOc0YTrmGTCR4AG66d_3XPlvjGllYp02eq9JUrZOIEcSpYAx59OqAtklhUrmpbaHqrfxdiweuD4ByWuVZrUpt3T_HBSZ-3Z4bddyXzc32b46g3OUifS5yn4ucLlb7wjvCzmFdY77_HKr-kCzGMZWvq7kkd2Q1W0ye5Bj_AL-BjvE</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Horie, Masao</creator><creator>Watanabe, Keisuke</creator><creator>Bepari, Asim K.</creator><creator>Nashimoto, Jun-ichiro</creator><creator>Araki, Kimi</creator><creator>Sano, Hiromi</creator><creator>Chiken, Satomi</creator><creator>Nambu, Atsushi</creator><creator>Ono, Katsuhiko</creator><creator>Ikenaka, Kazuhiro</creator><creator>Kakita, Akiyoshi</creator><creator>Yamamura, Ken-ichi</creator><creator>Takebayashi, Hirohide</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><author>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3851-b9365931ff4995a447034e12cdba3a25d960446c00fc4ed256f885f63d8c069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>autonomic neuropathy</topic><topic>Biological and medical sciences</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>dystonia</topic><topic>Dystonic Disorders - genetics</topic><topic>Dystonic Disorders - pathology</topic><topic>Dystonic Disorders - physiopathology</topic><topic>Dystonin</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Spinal - pathology</topic><topic>Ganglia, Spinal - physiopathology</topic><topic>gene trap mutant</topic><topic>hereditary sensory</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurodegeneration</topic><topic>Phenotype</topic><topic>Protein Isoforms</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord - physiopathology</topic><topic>Trigeminal Nerve - pathology</topic><topic>Trigeminal Nerve - physiopathology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horie, Masao</creatorcontrib><creatorcontrib>Watanabe, Keisuke</creatorcontrib><creatorcontrib>Bepari, Asim K.</creatorcontrib><creatorcontrib>Nashimoto, Jun-ichiro</creatorcontrib><creatorcontrib>Araki, Kimi</creatorcontrib><creatorcontrib>Sano, Hiromi</creatorcontrib><creatorcontrib>Chiken, Satomi</creatorcontrib><creatorcontrib>Nambu, Atsushi</creatorcontrib><creatorcontrib>Ono, Katsuhiko</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Kakita, Akiyoshi</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horie, Masao</au><au>Watanabe, Keisuke</au><au>Bepari, Asim K.</au><au>Nashimoto, Jun-ichiro</au><au>Araki, Kimi</au><au>Sano, Hiromi</au><au>Chiken, Satomi</au><au>Nambu, Atsushi</au><au>Ono, Katsuhiko</au><au>Ikenaka, Kazuhiro</au><au>Kakita, Akiyoshi</au><au>Yamamura, Ken-ichi</au><au>Takebayashi, Hirohide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2014-11</date><risdate>2014</risdate><volume>40</volume><issue>10</issue><spage>3458</spage><epage>3471</epage><pages>3458-3471</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype.
The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>25195653</pmid><doi>10.1111/ejn.12711</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2014-11, Vol.40 (10), p.3458-3471 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1641859661 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals autonomic neuropathy Biological and medical sciences Brain - pathology Brain - physiopathology Carrier Proteins - genetics Carrier Proteins - metabolism Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Disease Models, Animal dystonia Dystonic Disorders - genetics Dystonic Disorders - pathology Dystonic Disorders - physiopathology Dystonin Female Fundamental and applied biological sciences. Psychology Ganglia, Spinal - pathology Ganglia, Spinal - physiopathology gene trap mutant hereditary sensory Male Mice Mice, Inbred C57BL Mice, Transgenic Muscle, Skeletal - physiopathology Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism neurodegeneration Phenotype Protein Isoforms Spinal Cord - pathology Spinal Cord - physiopathology Trigeminal Nerve - pathology Trigeminal Nerve - physiopathology Vertebrates: nervous system and sense organs |
title | Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20actin-binding%20domain-containing%20Dystonin%20protein%20causes%20dystonia%20musculorum%20in%20mice&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Horie,%20Masao&rft.date=2014-11&rft.volume=40&rft.issue=10&rft.spage=3458&rft.epage=3471&rft.pages=3458-3471&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.12711&rft_dat=%3Cproquest_pubme%3E1641859661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641859661&rft_id=info:pmid/25195653&rfr_iscdi=true |