Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice

The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2014-11, Vol.40 (10), p.3458-3471
Hauptverfasser: Horie, Masao, Watanabe, Keisuke, Bepari, Asim K., Nashimoto, Jun-ichiro, Araki, Kimi, Sano, Hiromi, Chiken, Satomi, Nambu, Atsushi, Ono, Katsuhiko, Ikenaka, Kazuhiro, Kakita, Akiyoshi, Yamamura, Ken-ichi, Takebayashi, Hirohide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3471
container_issue 10
container_start_page 3458
container_title The European journal of neuroscience
container_volume 40
creator Horie, Masao
Watanabe, Keisuke
Bepari, Asim K.
Nashimoto, Jun-ichiro
Araki, Kimi
Sano, Hiromi
Chiken, Satomi
Nambu, Atsushi
Ono, Katsuhiko
Ikenaka, Kazuhiro
Kakita, Akiyoshi
Yamamura, Ken-ichi
Takebayashi, Hirohide
description The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype. The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.
doi_str_mv 10.1111/ejn.12711
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1641859661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1641859661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3851-b9365931ff4995a447034e12cdba3a25d960446c00fc4ed256f885f63d8c069b3</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EoqWw4AdQNkhs0trxI_YS-oKqKkICwc5yHAe55FHiRNC_x20KeHPHM-da1lwALhEcIn9GZl0OURQjdAT6iDAYCsr4MehDQXHIEXvrgTPn1hBCzgg9Bb2IIo9Q3AdqYl3dbhpblUGVBUo3tgwTW6a2fA_SqlD-qquy8brrTLauqXwVbOqqMV61ap1xQdr1VVC0Trd5VbdF4KeF1eYcnGQqd-bioAPwMps-j-_D5eP8YXy7DC3mFIWJwIwKjLKMCEEVITHExKBIp4nCKqKpYJAQpiHMNDFpRFnGOc0YTrmGTCR4AG66d_3XPlvjGllYp02eq9JUrZOIEcSpYAx59OqAtklhUrmpbaHqrfxdiweuD4ByWuVZrUpt3T_HBSZ-3Z4bddyXzc32b46g3OUifS5yn4ucLlb7wjvCzmFdY77_HKr-kCzGMZWvq7kkd2Q1W0ye5Bj_AL-BjvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641859661</pqid></control><display><type>article</type><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</creator><creatorcontrib>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</creatorcontrib><description>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype. The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.12711</identifier><identifier>PMID: 25195653</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animals ; autonomic neuropathy ; Biological and medical sciences ; Brain - pathology ; Brain - physiopathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Disease Models, Animal ; dystonia ; Dystonic Disorders - genetics ; Dystonic Disorders - pathology ; Dystonic Disorders - physiopathology ; Dystonin ; Female ; Fundamental and applied biological sciences. Psychology ; Ganglia, Spinal - pathology ; Ganglia, Spinal - physiopathology ; gene trap mutant ; hereditary sensory ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal - physiopathology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; neurodegeneration ; Phenotype ; Protein Isoforms ; Spinal Cord - pathology ; Spinal Cord - physiopathology ; Trigeminal Nerve - pathology ; Trigeminal Nerve - physiopathology ; Vertebrates: nervous system and sense organs</subject><ispartof>The European journal of neuroscience, 2014-11, Vol.40 (10), p.3458-3471</ispartof><rights>2014 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2014 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fejn.12711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fejn.12711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28934711$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25195653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horie, Masao</creatorcontrib><creatorcontrib>Watanabe, Keisuke</creatorcontrib><creatorcontrib>Bepari, Asim K.</creatorcontrib><creatorcontrib>Nashimoto, Jun-ichiro</creatorcontrib><creatorcontrib>Araki, Kimi</creatorcontrib><creatorcontrib>Sano, Hiromi</creatorcontrib><creatorcontrib>Chiken, Satomi</creatorcontrib><creatorcontrib>Nambu, Atsushi</creatorcontrib><creatorcontrib>Ono, Katsuhiko</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Kakita, Akiyoshi</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype. The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</description><subject>Animals</subject><subject>autonomic neuropathy</subject><subject>Biological and medical sciences</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>dystonia</subject><subject>Dystonic Disorders - genetics</subject><subject>Dystonic Disorders - pathology</subject><subject>Dystonic Disorders - physiopathology</subject><subject>Dystonin</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Spinal - pathology</subject><subject>Ganglia, Spinal - physiopathology</subject><subject>gene trap mutant</subject><subject>hereditary sensory</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurodegeneration</subject><subject>Phenotype</subject><subject>Protein Isoforms</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord - physiopathology</subject><subject>Trigeminal Nerve - pathology</subject><subject>Trigeminal Nerve - physiopathology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkctOwzAQRS0EoqWw4AdQNkhs0trxI_YS-oKqKkICwc5yHAe55FHiRNC_x20KeHPHM-da1lwALhEcIn9GZl0OURQjdAT6iDAYCsr4MehDQXHIEXvrgTPn1hBCzgg9Bb2IIo9Q3AdqYl3dbhpblUGVBUo3tgwTW6a2fA_SqlD-qquy8brrTLauqXwVbOqqMV61ap1xQdr1VVC0Trd5VbdF4KeF1eYcnGQqd-bioAPwMps-j-_D5eP8YXy7DC3mFIWJwIwKjLKMCEEVITHExKBIp4nCKqKpYJAQpiHMNDFpRFnGOc0YTrmGTCR4AG66d_3XPlvjGllYp02eq9JUrZOIEcSpYAx59OqAtklhUrmpbaHqrfxdiweuD4ByWuVZrUpt3T_HBSZ-3Z4bddyXzc32b46g3OUifS5yn4ucLlb7wjvCzmFdY77_HKr-kCzGMZWvq7kkd2Q1W0ye5Bj_AL-BjvE</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Horie, Masao</creator><creator>Watanabe, Keisuke</creator><creator>Bepari, Asim K.</creator><creator>Nashimoto, Jun-ichiro</creator><creator>Araki, Kimi</creator><creator>Sano, Hiromi</creator><creator>Chiken, Satomi</creator><creator>Nambu, Atsushi</creator><creator>Ono, Katsuhiko</creator><creator>Ikenaka, Kazuhiro</creator><creator>Kakita, Akiyoshi</creator><creator>Yamamura, Ken-ichi</creator><creator>Takebayashi, Hirohide</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</title><author>Horie, Masao ; Watanabe, Keisuke ; Bepari, Asim K. ; Nashimoto, Jun-ichiro ; Araki, Kimi ; Sano, Hiromi ; Chiken, Satomi ; Nambu, Atsushi ; Ono, Katsuhiko ; Ikenaka, Kazuhiro ; Kakita, Akiyoshi ; Yamamura, Ken-ichi ; Takebayashi, Hirohide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3851-b9365931ff4995a447034e12cdba3a25d960446c00fc4ed256f885f63d8c069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>autonomic neuropathy</topic><topic>Biological and medical sciences</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>dystonia</topic><topic>Dystonic Disorders - genetics</topic><topic>Dystonic Disorders - pathology</topic><topic>Dystonic Disorders - physiopathology</topic><topic>Dystonin</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Spinal - pathology</topic><topic>Ganglia, Spinal - physiopathology</topic><topic>gene trap mutant</topic><topic>hereditary sensory</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurodegeneration</topic><topic>Phenotype</topic><topic>Protein Isoforms</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord - physiopathology</topic><topic>Trigeminal Nerve - pathology</topic><topic>Trigeminal Nerve - physiopathology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horie, Masao</creatorcontrib><creatorcontrib>Watanabe, Keisuke</creatorcontrib><creatorcontrib>Bepari, Asim K.</creatorcontrib><creatorcontrib>Nashimoto, Jun-ichiro</creatorcontrib><creatorcontrib>Araki, Kimi</creatorcontrib><creatorcontrib>Sano, Hiromi</creatorcontrib><creatorcontrib>Chiken, Satomi</creatorcontrib><creatorcontrib>Nambu, Atsushi</creatorcontrib><creatorcontrib>Ono, Katsuhiko</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Kakita, Akiyoshi</creatorcontrib><creatorcontrib>Yamamura, Ken-ichi</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horie, Masao</au><au>Watanabe, Keisuke</au><au>Bepari, Asim K.</au><au>Nashimoto, Jun-ichiro</au><au>Araki, Kimi</au><au>Sano, Hiromi</au><au>Chiken, Satomi</au><au>Nambu, Atsushi</au><au>Ono, Katsuhiko</au><au>Ikenaka, Kazuhiro</au><au>Kakita, Akiyoshi</au><au>Yamamura, Ken-ichi</au><au>Takebayashi, Hirohide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2014-11</date><risdate>2014</risdate><volume>40</volume><issue>10</issue><spage>3458</spage><epage>3471</epage><pages>3458-3471</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst‐a isoforms, which contain actin‐binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well‐recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin‐LacZ fusion protein, which is detectable by X‐gal (5‐bromo‐4‐chloro‐3‐indolyl‐β‐D‐galactoside) staining. We observed wide expression of the actin‐binding domain‐containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell‐autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar‐thalamo‐striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss‐of‐function mutation in the actin‐binding domain‐containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype. The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin‐binding domain‐containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>25195653</pmid><doi>10.1111/ejn.12711</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2014-11, Vol.40 (10), p.3458-3471
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_1641859661
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
autonomic neuropathy
Biological and medical sciences
Brain - pathology
Brain - physiopathology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Disease Models, Animal
dystonia
Dystonic Disorders - genetics
Dystonic Disorders - pathology
Dystonic Disorders - physiopathology
Dystonin
Female
Fundamental and applied biological sciences. Psychology
Ganglia, Spinal - pathology
Ganglia, Spinal - physiopathology
gene trap mutant
hereditary sensory
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Muscle, Skeletal - physiopathology
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
neurodegeneration
Phenotype
Protein Isoforms
Spinal Cord - pathology
Spinal Cord - physiopathology
Trigeminal Nerve - pathology
Trigeminal Nerve - physiopathology
Vertebrates: nervous system and sense organs
title Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20actin-binding%20domain-containing%20Dystonin%20protein%20causes%20dystonia%20musculorum%20in%20mice&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Horie,%20Masao&rft.date=2014-11&rft.volume=40&rft.issue=10&rft.spage=3458&rft.epage=3471&rft.pages=3458-3471&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.12711&rft_dat=%3Cproquest_pubme%3E1641859661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641859661&rft_id=info:pmid/25195653&rfr_iscdi=true