Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant
Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.10648-10652 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10652 |
---|---|
container_issue | 22 |
container_start_page | 10648 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 89 |
creator | Wolfe, Kenneth H. Morden, Clifford W. Palmer, Jeffrey D. |
description | Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change. |
doi_str_mv | 10.1073/pnas.89.22.10648 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16418123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361967</jstor_id><sourcerecordid>2361967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxVcIVELhzoGPFUKIS8L4Y722xKWqKCBV4gA9cbAcx5s48tpb21vR_75ONgTKgZM9er-ZeaNXVc8RLBC05MPgVVpwscC41IzyB9UMgUBzRgU8rGYAuJ1ziunj6klKWwAQDYeT6gQRgqGhs-rnxeh1tsHXyq9qcxPcuK9CV6u6t972ytWDUynbVb02PvSm7mLoi-qDHzYhh3Tr88Zkq-tBRZXs_ueUz0-rR51yyTw7vKfV1cWnH-df5pffPn89P7uca0ZJnjcNFoYg1jIM3GBEmmULSlMggJZMccFaQKI4p4zRruGGNXTJgCBTMA6anFYfp7nDuOzNShufo3JyiMV8vJVBWXlf8XYj1-FGNkAEL-3vDu0xXI8mZdnbpI0rJ5gwJokYRRxhUsA3_4DbMEZfTpMYEGaE7qfBBOkYUoqmO_pAIHeZyV1mkguJsdxnVlpe_u3_T8MUUtHfHnSVtHJdVF7bdMQoFVhgXLDXB2y34Ld6f9H7_xOyG53L5lcu6IsJ3aYc4pHFhKGSR5FfTXKnglTrWOxcfUdCEChjGG_JHd-EyeE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201263498</pqid></control><display><type>article</type><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D.</creator><creatorcontrib>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D. ; Indiana University, Bloomington, IN</creatorcontrib><description>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.10648</identifier><identifier>PMID: 1332054</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>adn ; Biological and medical sciences ; Biological evolution ; chloroplaste ; chloroplasts ; Chromosomes - physiology ; Chromosomes - ultrastructure ; cloroplasto ; dna ; DNA Transposable Elements ; Epifagus virginiana ; evolucion ; Evolution ; expresion genica ; expression des genes ; Flowers & plants ; fotosintesis ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; gene expression ; Genes ; Genes, Plant ; Genetic mutation ; genetica ; genetics ; Genetics of eukaryotes. Biological and molecular evolution ; genetique ; genomas ; Genome ; Genomes ; Introns ; Molecular Sequence Data ; Nicotiana - genetics ; nicotiana tabacum ; nucleotide ; nucleotides ; nucleotidos ; orobanchaceae ; parasitic plants ; Peptide Initiation Factors - genetics ; photosynthese ; photosynthesis ; Photosynthesis - genetics ; Plant Physiological Phenomena ; Plant Proteins - genetics ; plantas parasitas ; plante parasite ; Plants ; Plants - genetics ; Plants, Toxic ; plaste ; plastidios ; Plastids ; Pseudogenes ; Ribosomal Proteins - genetics ; RNA ; RNA, Ribosomal - genetics ; RNA, Transfer - genetics ; Transfer RNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10648-10652</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4492922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1332054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfe, Kenneth H.</creatorcontrib><creatorcontrib>Morden, Clifford W.</creatorcontrib><creatorcontrib>Palmer, Jeffrey D.</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</description><subject>adn</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>chloroplaste</subject><subject>chloroplasts</subject><subject>Chromosomes - physiology</subject><subject>Chromosomes - ultrastructure</subject><subject>cloroplasto</subject><subject>dna</subject><subject>DNA Transposable Elements</subject><subject>Epifagus virginiana</subject><subject>evolucion</subject><subject>Evolution</subject><subject>expresion genica</subject><subject>expression des genes</subject><subject>Flowers & plants</subject><subject>fotosintesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic mutation</subject><subject>genetica</subject><subject>genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genetique</subject><subject>genomas</subject><subject>Genome</subject><subject>Genomes</subject><subject>Introns</subject><subject>Molecular Sequence Data</subject><subject>Nicotiana - genetics</subject><subject>nicotiana tabacum</subject><subject>nucleotide</subject><subject>nucleotides</subject><subject>nucleotidos</subject><subject>orobanchaceae</subject><subject>parasitic plants</subject><subject>Peptide Initiation Factors - genetics</subject><subject>photosynthese</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Plant Physiological Phenomena</subject><subject>Plant Proteins - genetics</subject><subject>plantas parasitas</subject><subject>plante parasite</subject><subject>Plants</subject><subject>Plants - genetics</subject><subject>Plants, Toxic</subject><subject>plaste</subject><subject>plastidios</subject><subject>Plastids</subject><subject>Pseudogenes</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Transfer - genetics</subject><subject>Transfer RNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxVcIVELhzoGPFUKIS8L4Y722xKWqKCBV4gA9cbAcx5s48tpb21vR_75ONgTKgZM9er-ZeaNXVc8RLBC05MPgVVpwscC41IzyB9UMgUBzRgU8rGYAuJ1ziunj6klKWwAQDYeT6gQRgqGhs-rnxeh1tsHXyq9qcxPcuK9CV6u6t972ytWDUynbVb02PvSm7mLoi-qDHzYhh3Tr88Zkq-tBRZXs_ueUz0-rR51yyTw7vKfV1cWnH-df5pffPn89P7uca0ZJnjcNFoYg1jIM3GBEmmULSlMggJZMccFaQKI4p4zRruGGNXTJgCBTMA6anFYfp7nDuOzNShufo3JyiMV8vJVBWXlf8XYj1-FGNkAEL-3vDu0xXI8mZdnbpI0rJ5gwJokYRRxhUsA3_4DbMEZfTpMYEGaE7qfBBOkYUoqmO_pAIHeZyV1mkguJsdxnVlpe_u3_T8MUUtHfHnSVtHJdVF7bdMQoFVhgXLDXB2y34Ld6f9H7_xOyG53L5lcu6IsJ3aYc4pHFhKGSR5FfTXKnglTrWOxcfUdCEChjGG_JHd-EyeE</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Wolfe, Kenneth H.</creator><creator>Morden, Clifford W.</creator><creator>Palmer, Jeffrey D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><author>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>adn</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>chloroplaste</topic><topic>chloroplasts</topic><topic>Chromosomes - physiology</topic><topic>Chromosomes - ultrastructure</topic><topic>cloroplasto</topic><topic>dna</topic><topic>DNA Transposable Elements</topic><topic>Epifagus virginiana</topic><topic>evolucion</topic><topic>Evolution</topic><topic>expresion genica</topic><topic>expression des genes</topic><topic>Flowers & plants</topic><topic>fotosintesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic mutation</topic><topic>genetica</topic><topic>genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genetique</topic><topic>genomas</topic><topic>Genome</topic><topic>Genomes</topic><topic>Introns</topic><topic>Molecular Sequence Data</topic><topic>Nicotiana - genetics</topic><topic>nicotiana tabacum</topic><topic>nucleotide</topic><topic>nucleotides</topic><topic>nucleotidos</topic><topic>orobanchaceae</topic><topic>parasitic plants</topic><topic>Peptide Initiation Factors - genetics</topic><topic>photosynthese</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Plant Physiological Phenomena</topic><topic>Plant Proteins - genetics</topic><topic>plantas parasitas</topic><topic>plante parasite</topic><topic>Plants</topic><topic>Plants - genetics</topic><topic>Plants, Toxic</topic><topic>plaste</topic><topic>plastidios</topic><topic>Plastids</topic><topic>Pseudogenes</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Transfer - genetics</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfe, Kenneth H.</creatorcontrib><creatorcontrib>Morden, Clifford W.</creatorcontrib><creatorcontrib>Palmer, Jeffrey D.</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfe, Kenneth H.</au><au>Morden, Clifford W.</au><au>Palmer, Jeffrey D.</au><aucorp>Indiana University, Bloomington, IN</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>10648</spage><epage>10652</epage><pages>10648-10652</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1332054</pmid><doi>10.1073/pnas.89.22.10648</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10648-10652 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_16418123 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | adn Biological and medical sciences Biological evolution chloroplaste chloroplasts Chromosomes - physiology Chromosomes - ultrastructure cloroplasto dna DNA Transposable Elements Epifagus virginiana evolucion Evolution expresion genica expression des genes Flowers & plants fotosintesis Fundamental and applied biological sciences. Psychology Gene Deletion gene expression Genes Genes, Plant Genetic mutation genetica genetics Genetics of eukaryotes. Biological and molecular evolution genetique genomas Genome Genomes Introns Molecular Sequence Data Nicotiana - genetics nicotiana tabacum nucleotide nucleotides nucleotidos orobanchaceae parasitic plants Peptide Initiation Factors - genetics photosynthese photosynthesis Photosynthesis - genetics Plant Physiological Phenomena Plant Proteins - genetics plantas parasitas plante parasite Plants Plants - genetics Plants, Toxic plaste plastidios Plastids Pseudogenes Ribosomal Proteins - genetics RNA RNA, Ribosomal - genetics RNA, Transfer - genetics Transfer RNA |
title | Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20and%20evolution%20of%20a%20minimal%20plastid%20genome%20from%20a%20nonphotosynthetic%20parasitic%20plant&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wolfe,%20Kenneth%20H.&rft.aucorp=Indiana%20University,%20Bloomington,%20IN&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=10648&rft.epage=10652&rft.pages=10648-10652&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.10648&rft_dat=%3Cjstor_proqu%3E2361967%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201263498&rft_id=info:pmid/1332054&rft_jstor_id=2361967&rfr_iscdi=true |