Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant

Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.10648-10652
Hauptverfasser: Wolfe, Kenneth H., Morden, Clifford W., Palmer, Jeffrey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10652
container_issue 22
container_start_page 10648
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 89
creator Wolfe, Kenneth H.
Morden, Clifford W.
Palmer, Jeffrey D.
description Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.
doi_str_mv 10.1073/pnas.89.22.10648
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_16418123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361967</jstor_id><sourcerecordid>2361967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxVcIVELhzoGPFUKIS8L4Y722xKWqKCBV4gA9cbAcx5s48tpb21vR_75ONgTKgZM9er-ZeaNXVc8RLBC05MPgVVpwscC41IzyB9UMgUBzRgU8rGYAuJ1ziunj6klKWwAQDYeT6gQRgqGhs-rnxeh1tsHXyq9qcxPcuK9CV6u6t972ytWDUynbVb02PvSm7mLoi-qDHzYhh3Tr88Zkq-tBRZXs_ueUz0-rR51yyTw7vKfV1cWnH-df5pffPn89P7uca0ZJnjcNFoYg1jIM3GBEmmULSlMggJZMccFaQKI4p4zRruGGNXTJgCBTMA6anFYfp7nDuOzNShufo3JyiMV8vJVBWXlf8XYj1-FGNkAEL-3vDu0xXI8mZdnbpI0rJ5gwJokYRRxhUsA3_4DbMEZfTpMYEGaE7qfBBOkYUoqmO_pAIHeZyV1mkguJsdxnVlpe_u3_T8MUUtHfHnSVtHJdVF7bdMQoFVhgXLDXB2y34Ld6f9H7_xOyG53L5lcu6IsJ3aYc4pHFhKGSR5FfTXKnglTrWOxcfUdCEChjGG_JHd-EyeE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201263498</pqid></control><display><type>article</type><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D.</creator><creatorcontrib>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D. ; Indiana University, Bloomington, IN</creatorcontrib><description>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.10648</identifier><identifier>PMID: 1332054</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>adn ; Biological and medical sciences ; Biological evolution ; chloroplaste ; chloroplasts ; Chromosomes - physiology ; Chromosomes - ultrastructure ; cloroplasto ; dna ; DNA Transposable Elements ; Epifagus virginiana ; evolucion ; Evolution ; expresion genica ; expression des genes ; Flowers &amp; plants ; fotosintesis ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; gene expression ; Genes ; Genes, Plant ; Genetic mutation ; genetica ; genetics ; Genetics of eukaryotes. Biological and molecular evolution ; genetique ; genomas ; Genome ; Genomes ; Introns ; Molecular Sequence Data ; Nicotiana - genetics ; nicotiana tabacum ; nucleotide ; nucleotides ; nucleotidos ; orobanchaceae ; parasitic plants ; Peptide Initiation Factors - genetics ; photosynthese ; photosynthesis ; Photosynthesis - genetics ; Plant Physiological Phenomena ; Plant Proteins - genetics ; plantas parasitas ; plante parasite ; Plants ; Plants - genetics ; Plants, Toxic ; plaste ; plastidios ; Plastids ; Pseudogenes ; Ribosomal Proteins - genetics ; RNA ; RNA, Ribosomal - genetics ; RNA, Transfer - genetics ; Transfer RNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10648-10652</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4492922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1332054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfe, Kenneth H.</creatorcontrib><creatorcontrib>Morden, Clifford W.</creatorcontrib><creatorcontrib>Palmer, Jeffrey D.</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</description><subject>adn</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>chloroplaste</subject><subject>chloroplasts</subject><subject>Chromosomes - physiology</subject><subject>Chromosomes - ultrastructure</subject><subject>cloroplasto</subject><subject>dna</subject><subject>DNA Transposable Elements</subject><subject>Epifagus virginiana</subject><subject>evolucion</subject><subject>Evolution</subject><subject>expresion genica</subject><subject>expression des genes</subject><subject>Flowers &amp; plants</subject><subject>fotosintesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic mutation</subject><subject>genetica</subject><subject>genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genetique</subject><subject>genomas</subject><subject>Genome</subject><subject>Genomes</subject><subject>Introns</subject><subject>Molecular Sequence Data</subject><subject>Nicotiana - genetics</subject><subject>nicotiana tabacum</subject><subject>nucleotide</subject><subject>nucleotides</subject><subject>nucleotidos</subject><subject>orobanchaceae</subject><subject>parasitic plants</subject><subject>Peptide Initiation Factors - genetics</subject><subject>photosynthese</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Plant Physiological Phenomena</subject><subject>Plant Proteins - genetics</subject><subject>plantas parasitas</subject><subject>plante parasite</subject><subject>Plants</subject><subject>Plants - genetics</subject><subject>Plants, Toxic</subject><subject>plaste</subject><subject>plastidios</subject><subject>Plastids</subject><subject>Pseudogenes</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Transfer - genetics</subject><subject>Transfer RNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxVcIVELhzoGPFUKIS8L4Y722xKWqKCBV4gA9cbAcx5s48tpb21vR_75ONgTKgZM9er-ZeaNXVc8RLBC05MPgVVpwscC41IzyB9UMgUBzRgU8rGYAuJ1ziunj6klKWwAQDYeT6gQRgqGhs-rnxeh1tsHXyq9qcxPcuK9CV6u6t972ytWDUynbVb02PvSm7mLoi-qDHzYhh3Tr88Zkq-tBRZXs_ueUz0-rR51yyTw7vKfV1cWnH-df5pffPn89P7uca0ZJnjcNFoYg1jIM3GBEmmULSlMggJZMccFaQKI4p4zRruGGNXTJgCBTMA6anFYfp7nDuOzNShufo3JyiMV8vJVBWXlf8XYj1-FGNkAEL-3vDu0xXI8mZdnbpI0rJ5gwJokYRRxhUsA3_4DbMEZfTpMYEGaE7qfBBOkYUoqmO_pAIHeZyV1mkguJsdxnVlpe_u3_T8MUUtHfHnSVtHJdVF7bdMQoFVhgXLDXB2y34Ld6f9H7_xOyG53L5lcu6IsJ3aYc4pHFhKGSR5FfTXKnglTrWOxcfUdCEChjGG_JHd-EyeE</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Wolfe, Kenneth H.</creator><creator>Morden, Clifford W.</creator><creator>Palmer, Jeffrey D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</title><author>Wolfe, Kenneth H. ; Morden, Clifford W. ; Palmer, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-5529e31676208e2135b70ac40301b6a89670190954664f58e654b6031e70a80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>adn</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>chloroplaste</topic><topic>chloroplasts</topic><topic>Chromosomes - physiology</topic><topic>Chromosomes - ultrastructure</topic><topic>cloroplasto</topic><topic>dna</topic><topic>DNA Transposable Elements</topic><topic>Epifagus virginiana</topic><topic>evolucion</topic><topic>Evolution</topic><topic>expresion genica</topic><topic>expression des genes</topic><topic>Flowers &amp; plants</topic><topic>fotosintesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic mutation</topic><topic>genetica</topic><topic>genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genetique</topic><topic>genomas</topic><topic>Genome</topic><topic>Genomes</topic><topic>Introns</topic><topic>Molecular Sequence Data</topic><topic>Nicotiana - genetics</topic><topic>nicotiana tabacum</topic><topic>nucleotide</topic><topic>nucleotides</topic><topic>nucleotidos</topic><topic>orobanchaceae</topic><topic>parasitic plants</topic><topic>Peptide Initiation Factors - genetics</topic><topic>photosynthese</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Plant Physiological Phenomena</topic><topic>Plant Proteins - genetics</topic><topic>plantas parasitas</topic><topic>plante parasite</topic><topic>Plants</topic><topic>Plants - genetics</topic><topic>Plants, Toxic</topic><topic>plaste</topic><topic>plastidios</topic><topic>Plastids</topic><topic>Pseudogenes</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Transfer - genetics</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfe, Kenneth H.</creatorcontrib><creatorcontrib>Morden, Clifford W.</creatorcontrib><creatorcontrib>Palmer, Jeffrey D.</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfe, Kenneth H.</au><au>Morden, Clifford W.</au><au>Palmer, Jeffrey D.</au><aucorp>Indiana University, Bloomington, IN</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>10648</spage><epage>10652</epage><pages>10648-10652</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1332054</pmid><doi>10.1073/pnas.89.22.10648</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10648-10652
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_16418123
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adn
Biological and medical sciences
Biological evolution
chloroplaste
chloroplasts
Chromosomes - physiology
Chromosomes - ultrastructure
cloroplasto
dna
DNA Transposable Elements
Epifagus virginiana
evolucion
Evolution
expresion genica
expression des genes
Flowers & plants
fotosintesis
Fundamental and applied biological sciences. Psychology
Gene Deletion
gene expression
Genes
Genes, Plant
Genetic mutation
genetica
genetics
Genetics of eukaryotes. Biological and molecular evolution
genetique
genomas
Genome
Genomes
Introns
Molecular Sequence Data
Nicotiana - genetics
nicotiana tabacum
nucleotide
nucleotides
nucleotidos
orobanchaceae
parasitic plants
Peptide Initiation Factors - genetics
photosynthese
photosynthesis
Photosynthesis - genetics
Plant Physiological Phenomena
Plant Proteins - genetics
plantas parasitas
plante parasite
Plants
Plants - genetics
Plants, Toxic
plaste
plastidios
Plastids
Pseudogenes
Ribosomal Proteins - genetics
RNA
RNA, Ribosomal - genetics
RNA, Transfer - genetics
Transfer RNA
title Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20and%20evolution%20of%20a%20minimal%20plastid%20genome%20from%20a%20nonphotosynthetic%20parasitic%20plant&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wolfe,%20Kenneth%20H.&rft.aucorp=Indiana%20University,%20Bloomington,%20IN&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=10648&rft.epage=10652&rft.pages=10648-10652&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.10648&rft_dat=%3Cjstor_proqu%3E2361967%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201263498&rft_id=info:pmid/1332054&rft_jstor_id=2361967&rfr_iscdi=true