Solving inequality constrained combinatorial optimization problems by the hopfield neural networks
The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution o...
Gespeichert in:
Veröffentlicht in: | Neural networks 1992, Vol.5 (4), p.663-670 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 4 |
container_start_page | 663 |
container_title | Neural networks |
container_volume | 5 |
creator | Abe, Shigeo Kawakami, Junzo Hirasawa, Kotaroo |
description | The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints. |
doi_str_mv | 10.1016/S0893-6080(05)80043-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16414904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608005800437</els_id><sourcerecordid>16414904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</originalsourceid><addsrcrecordid>eNqFkEtrGzEQgEVoIK7bn1DYQwnJYdvRalcrnUIw6QMMOTg5C612tlarlWxJdnB-fdZxyLWnGYZvXh8hXyh8o0D59xUIyUoOAq6guRYANSvbMzKjopVl1YrqA5m9IxfkY0p_AYCLms1Itwpub_2fwnrc7rSz-VCY4FOOeqr0Uz521uscotWuCJtsR_ussw2-2MTQORxT0R2KvMZiHTaDRdcXHndxgj3mpxD_pU_kfNAu4ee3OCePP-4eFr_K5f3P34vbZWkYb3NZAfbA-87UUtIaKIVBaCMbw6ETFQpeA5emMqZtRKuZYUOnRdVJhgis5z2bk8vT3Omw7Q5TVqNNBp3THsMuKcprWstJzpw0J9DEkFLEQW2iHXU8KArqaFS9GlVHXQoa9WpUtVPf17cFOhnthqi9sem9uakrLhmbsJsThtOze4tRJWPRG-xtRJNVH-x_Fr0AoSiM5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16414904</pqid></control><display><type>article</type><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</creator><creatorcontrib>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</creatorcontrib><description>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(05)80043-7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Combinatorial optimization ; Electric, optical and optoelectronic circuits ; Electronics ; Energy function ; Equality constraints ; Exact sciences and technology ; Hopfield model ; Inequality constraints ; Knapsack problem ; Neural networks ; Weight</subject><ispartof>Neural networks, 1992, Vol.5 (4), p.663-670</ispartof><rights>1992 Pergamon Press Ltd.</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</citedby><cites>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608005800437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5426933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Shigeo</creatorcontrib><creatorcontrib>Kawakami, Junzo</creatorcontrib><creatorcontrib>Hirasawa, Kotaroo</creatorcontrib><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><title>Neural networks</title><description>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</description><subject>Applied sciences</subject><subject>Combinatorial optimization</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Energy function</subject><subject>Equality constraints</subject><subject>Exact sciences and technology</subject><subject>Hopfield model</subject><subject>Inequality constraints</subject><subject>Knapsack problem</subject><subject>Neural networks</subject><subject>Weight</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrGzEQgEVoIK7bn1DYQwnJYdvRalcrnUIw6QMMOTg5C612tlarlWxJdnB-fdZxyLWnGYZvXh8hXyh8o0D59xUIyUoOAq6guRYANSvbMzKjopVl1YrqA5m9IxfkY0p_AYCLms1Itwpub_2fwnrc7rSz-VCY4FOOeqr0Uz521uscotWuCJtsR_ussw2-2MTQORxT0R2KvMZiHTaDRdcXHndxgj3mpxD_pU_kfNAu4ee3OCePP-4eFr_K5f3P34vbZWkYb3NZAfbA-87UUtIaKIVBaCMbw6ETFQpeA5emMqZtRKuZYUOnRdVJhgis5z2bk8vT3Omw7Q5TVqNNBp3THsMuKcprWstJzpw0J9DEkFLEQW2iHXU8KArqaFS9GlVHXQoa9WpUtVPf17cFOhnthqi9sem9uakrLhmbsJsThtOze4tRJWPRG-xtRJNVH-x_Fr0AoSiM5Q</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Abe, Shigeo</creator><creator>Kawakami, Junzo</creator><creator>Hirasawa, Kotaroo</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>1992</creationdate><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><author>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Combinatorial optimization</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Energy function</topic><topic>Equality constraints</topic><topic>Exact sciences and technology</topic><topic>Hopfield model</topic><topic>Inequality constraints</topic><topic>Knapsack problem</topic><topic>Neural networks</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Shigeo</creatorcontrib><creatorcontrib>Kawakami, Junzo</creatorcontrib><creatorcontrib>Hirasawa, Kotaroo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Shigeo</au><au>Kawakami, Junzo</au><au>Hirasawa, Kotaroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</atitle><jtitle>Neural networks</jtitle><date>1992</date><risdate>1992</risdate><volume>5</volume><issue>4</issue><spage>663</spage><epage>670</epage><pages>663-670</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0893-6080(05)80043-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 1992, Vol.5 (4), p.663-670 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_16414904 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Combinatorial optimization Electric, optical and optoelectronic circuits Electronics Energy function Equality constraints Exact sciences and technology Hopfield model Inequality constraints Knapsack problem Neural networks Weight |
title | Solving inequality constrained combinatorial optimization problems by the hopfield neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20inequality%20constrained%20combinatorial%20optimization%20problems%20by%20the%20hopfield%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Abe,%20Shigeo&rft.date=1992&rft.volume=5&rft.issue=4&rft.spage=663&rft.epage=670&rft.pages=663-670&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(05)80043-7&rft_dat=%3Cproquest_cross%3E16414904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16414904&rft_id=info:pmid/&rft_els_id=S0893608005800437&rfr_iscdi=true |