Solving inequality constrained combinatorial optimization problems by the hopfield neural networks

The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1992, Vol.5 (4), p.663-670
Hauptverfasser: Abe, Shigeo, Kawakami, Junzo, Hirasawa, Kotaroo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 4
container_start_page 663
container_title Neural networks
container_volume 5
creator Abe, Shigeo
Kawakami, Junzo
Hirasawa, Kotaroo
description The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.
doi_str_mv 10.1016/S0893-6080(05)80043-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16414904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608005800437</els_id><sourcerecordid>16414904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</originalsourceid><addsrcrecordid>eNqFkEtrGzEQgEVoIK7bn1DYQwnJYdvRalcrnUIw6QMMOTg5C612tlarlWxJdnB-fdZxyLWnGYZvXh8hXyh8o0D59xUIyUoOAq6guRYANSvbMzKjopVl1YrqA5m9IxfkY0p_AYCLms1Itwpub_2fwnrc7rSz-VCY4FOOeqr0Uz521uscotWuCJtsR_ussw2-2MTQORxT0R2KvMZiHTaDRdcXHndxgj3mpxD_pU_kfNAu4ee3OCePP-4eFr_K5f3P34vbZWkYb3NZAfbA-87UUtIaKIVBaCMbw6ETFQpeA5emMqZtRKuZYUOnRdVJhgis5z2bk8vT3Omw7Q5TVqNNBp3THsMuKcprWstJzpw0J9DEkFLEQW2iHXU8KArqaFS9GlVHXQoa9WpUtVPf17cFOhnthqi9sem9uakrLhmbsJsThtOze4tRJWPRG-xtRJNVH-x_Fr0AoSiM5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16414904</pqid></control><display><type>article</type><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</creator><creatorcontrib>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</creatorcontrib><description>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(05)80043-7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Combinatorial optimization ; Electric, optical and optoelectronic circuits ; Electronics ; Energy function ; Equality constraints ; Exact sciences and technology ; Hopfield model ; Inequality constraints ; Knapsack problem ; Neural networks ; Weight</subject><ispartof>Neural networks, 1992, Vol.5 (4), p.663-670</ispartof><rights>1992 Pergamon Press Ltd.</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</citedby><cites>FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608005800437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5426933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Shigeo</creatorcontrib><creatorcontrib>Kawakami, Junzo</creatorcontrib><creatorcontrib>Hirasawa, Kotaroo</creatorcontrib><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><title>Neural networks</title><description>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</description><subject>Applied sciences</subject><subject>Combinatorial optimization</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Energy function</subject><subject>Equality constraints</subject><subject>Exact sciences and technology</subject><subject>Hopfield model</subject><subject>Inequality constraints</subject><subject>Knapsack problem</subject><subject>Neural networks</subject><subject>Weight</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrGzEQgEVoIK7bn1DYQwnJYdvRalcrnUIw6QMMOTg5C612tlarlWxJdnB-fdZxyLWnGYZvXh8hXyh8o0D59xUIyUoOAq6guRYANSvbMzKjopVl1YrqA5m9IxfkY0p_AYCLms1Itwpub_2fwnrc7rSz-VCY4FOOeqr0Uz521uscotWuCJtsR_ussw2-2MTQORxT0R2KvMZiHTaDRdcXHndxgj3mpxD_pU_kfNAu4ee3OCePP-4eFr_K5f3P34vbZWkYb3NZAfbA-87UUtIaKIVBaCMbw6ETFQpeA5emMqZtRKuZYUOnRdVJhgis5z2bk8vT3Omw7Q5TVqNNBp3THsMuKcprWstJzpw0J9DEkFLEQW2iHXU8KArqaFS9GlVHXQoa9WpUtVPf17cFOhnthqi9sem9uakrLhmbsJsThtOze4tRJWPRG-xtRJNVH-x_Fr0AoSiM5Q</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Abe, Shigeo</creator><creator>Kawakami, Junzo</creator><creator>Hirasawa, Kotaroo</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>1992</creationdate><title>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</title><author>Abe, Shigeo ; Kawakami, Junzo ; Hirasawa, Kotaroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-20ed06dbc499140110f8ac95c60b82e864069c2cc7587a3c3fba82b93ee03d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Combinatorial optimization</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Energy function</topic><topic>Equality constraints</topic><topic>Exact sciences and technology</topic><topic>Hopfield model</topic><topic>Inequality constraints</topic><topic>Knapsack problem</topic><topic>Neural networks</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Shigeo</creatorcontrib><creatorcontrib>Kawakami, Junzo</creatorcontrib><creatorcontrib>Hirasawa, Kotaroo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Shigeo</au><au>Kawakami, Junzo</au><au>Hirasawa, Kotaroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving inequality constrained combinatorial optimization problems by the hopfield neural networks</atitle><jtitle>Neural networks</jtitle><date>1992</date><risdate>1992</risdate><volume>5</volume><issue>4</issue><spage>663</spage><epage>670</epage><pages>663-670</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The Hopfield neural networks are extended to handle inequality constraints where linear combinations of variables are lower- or upper-bounded. Then by eigenvalue analysis, the effects of the inequality constraints are analyzed and the following results are obtained: (a) if a combinatorial solution obtained by the networks satisfies the inequality constraints, the eigenvalues corresponding to the solution are the same as those without the inequality constraints; and (b) a combinatorial solution which satisfies the inequality constraints is stable if the energy, without the inequality constraints, of the solution is the smallest among those of the adjacent combinatorial solutions. From these results, the weights in the energy function are determined so that a combinatorial solution which satisfies the equality constraints, but does not satisfy the inequality constraints, is unstable. The results are verified for the knapsack problem and the transportation problem. For the latter problem, convergence to the optimal solution is improved by the introduction of the inequality constraints.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0893-6080(05)80043-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1992, Vol.5 (4), p.663-670
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_16414904
source Elsevier ScienceDirect Journals
subjects Applied sciences
Combinatorial optimization
Electric, optical and optoelectronic circuits
Electronics
Energy function
Equality constraints
Exact sciences and technology
Hopfield model
Inequality constraints
Knapsack problem
Neural networks
Weight
title Solving inequality constrained combinatorial optimization problems by the hopfield neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20inequality%20constrained%20combinatorial%20optimization%20problems%20by%20the%20hopfield%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Abe,%20Shigeo&rft.date=1992&rft.volume=5&rft.issue=4&rft.spage=663&rft.epage=670&rft.pages=663-670&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(05)80043-7&rft_dat=%3Cproquest_cross%3E16414904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16414904&rft_id=info:pmid/&rft_els_id=S0893608005800437&rfr_iscdi=true