Antifolates induce inhibition of amido phosphoribosyltransferase in leukemia cells

The pathway for de novo biosynthesis of purine nucleotides contains two one-carbon transfer reactions catalyzed by glycinamide ribotide (GAR) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylases in which N10-formyltetrahydrofolate is the one-carbon donor. We have found that the antifo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-06, Vol.267 (16), p.11038-11045
Hauptverfasser: SANT, M. E, LYONS, S. D, PHILLIPS, L, CHRISTOPHERSON, R. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pathway for de novo biosynthesis of purine nucleotides contains two one-carbon transfer reactions catalyzed by glycinamide ribotide (GAR) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylases in which N10-formyltetrahydrofolate is the one-carbon donor. We have found that the antifolates methotrexate (MTX) and piritrexim (PTX) completely block the de novo purine pathway in mouse L1210 leukemia cells growing in culture but with only minor accumulations of GAR and AICAR to less than 5% of the polyphosphate derivatives of N-formylglycinamide ribotide (FGAR) which accumulate when the pathway is blocked completely by azaserine. This azaserine-induced accumulation of FGAR polyphosphates is completely abolished by MTX, indicating that inhibition of the pathway is at or before GAR transformylase (reaction 3; Lyons, S. D., and Christopherson, R. I. (1991) Biochem. Int. 24, 187-197). Three h after the addition of MTX (0.1 microM), cellular 5-phosphoribosyl-1-pyrophosphate has accumulated 3.4-fold while 6-methyl-mercaptopurine riboside (25 microM) induces a 6.3-fold accumulation. These data suggest that amido phosphoribosyltransferase catalyzing reaction 1 of the pathway is the primary site of inhibition. In support of this conclusion, we have found that dihydrofolate-Glu5, which accumulates in MTX-treated cells, is a noncompetitive inhibitor of amido phosphoribosyltransferase with a dissociation constant of 3.41 +/- 0.08 microM for interaction with the enzyme-glutamine complex in vitro. Folate-Glu5, MTX-Glu5, PTX, dihydrotriazine benzenesulfonyl fluoride, and AICAR also inhibit amido phosphoribosyltransferase.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)49872-4