Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the o...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 1998-04, Vol.21 (5), p.339-350 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 5 |
container_start_page | 339 |
container_title | Advances in water resources |
container_volume | 21 |
creator | Cooper, Grant S. Peralta, Richard C. Kaluarachchi, Jagath J. |
description | A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators. |
doi_str_mv | 10.1016/S0309-1708(97)00005-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16409831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170897000055</els_id><sourcerecordid>16409831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</originalsourceid><addsrcrecordid>eNqFkUtLJDEURoM4MO3jJwzWYpCZRY25eVSSlYjMCwQX6sZNSKWT7gxVSZlUC-2vn7Qtbs0muXC-3Mu5CH0B_AMwdBd3mGLVgsDymxLfcT285QdoAVKQVnVcHKLFO_IZHZXyrzKSCbJAj7fTHMbwEuKqKW4y2cyumdamuGYIq_XcrLfLnKzJfYpNdjY9u7xtfE5jY1OczRhiTSybTaylD7E-zdMmeJfLCfrkzVDc6dt9jB5-_by__tPe3P7-e3110xrG-NxS4TtFsec9V0RZSjvZMYY574FwLr3qwIHsSc-EpMwR3lkOjABV3oIES4_R-f7fKaenjSuzHkOxbhhMdGlTNHQMK0nhY5AxyauuCvI9aHMqJTuvpxxGk7casN4p16_K9c6nVkK_Kte85r6-NTDFmsFnE20o72FCiACGK3a2x7xJ2qxyRR7uCAaKiZSYst2kl3vCVW_PwWVdbHDRumWoO5j1MoUPRvkPtK6d9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14485657</pqid></control><display><type>article</type><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</creator><creatorcontrib>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</creatorcontrib><description>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/S0309-1708(97)00005-5</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>aquifers ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; equations ; Exact sciences and technology ; free-product ; groundwater ; groundwater contamination ; groundwater extraction ; hydrocarbons ; light non-aqueous phase liquids ; multiphase ; Natural hazards: prediction, damages, etc ; optimization ; petroleum ; Pollution, environment geology ; recovery ; regression equations ; removal ; simulation models ; simulation regression optimization model ; water purification ; wells</subject><ispartof>Advances in water resources, 1998-04, Vol.21 (5), p.339-350</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</citedby><cites>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0309-1708(97)00005-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2227140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Grant S.</creatorcontrib><creatorcontrib>Peralta, Richard C.</creatorcontrib><creatorcontrib>Kaluarachchi, Jagath J.</creatorcontrib><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><title>Advances in water resources</title><description>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</description><subject>aquifers</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>free-product</subject><subject>groundwater</subject><subject>groundwater contamination</subject><subject>groundwater extraction</subject><subject>hydrocarbons</subject><subject>light non-aqueous phase liquids</subject><subject>multiphase</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>optimization</subject><subject>petroleum</subject><subject>Pollution, environment geology</subject><subject>recovery</subject><subject>regression equations</subject><subject>removal</subject><subject>simulation models</subject><subject>simulation regression optimization model</subject><subject>water purification</subject><subject>wells</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLJDEURoM4MO3jJwzWYpCZRY25eVSSlYjMCwQX6sZNSKWT7gxVSZlUC-2vn7Qtbs0muXC-3Mu5CH0B_AMwdBd3mGLVgsDymxLfcT285QdoAVKQVnVcHKLFO_IZHZXyrzKSCbJAj7fTHMbwEuKqKW4y2cyumdamuGYIq_XcrLfLnKzJfYpNdjY9u7xtfE5jY1OczRhiTSybTaylD7E-zdMmeJfLCfrkzVDc6dt9jB5-_by__tPe3P7-e3110xrG-NxS4TtFsec9V0RZSjvZMYY574FwLr3qwIHsSc-EpMwR3lkOjABV3oIES4_R-f7fKaenjSuzHkOxbhhMdGlTNHQMK0nhY5AxyauuCvI9aHMqJTuvpxxGk7casN4p16_K9c6nVkK_Kte85r6-NTDFmsFnE20o72FCiACGK3a2x7xJ2qxyRR7uCAaKiZSYst2kl3vCVW_PwWVdbHDRumWoO5j1MoUPRvkPtK6d9A</recordid><startdate>19980415</startdate><enddate>19980415</enddate><creator>Cooper, Grant S.</creator><creator>Peralta, Richard C.</creator><creator>Kaluarachchi, Jagath J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>19980415</creationdate><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><author>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>aquifers</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>free-product</topic><topic>groundwater</topic><topic>groundwater contamination</topic><topic>groundwater extraction</topic><topic>hydrocarbons</topic><topic>light non-aqueous phase liquids</topic><topic>multiphase</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>optimization</topic><topic>petroleum</topic><topic>Pollution, environment geology</topic><topic>recovery</topic><topic>regression equations</topic><topic>removal</topic><topic>simulation models</topic><topic>simulation regression optimization model</topic><topic>water purification</topic><topic>wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Grant S.</creatorcontrib><creatorcontrib>Peralta, Richard C.</creatorcontrib><creatorcontrib>Kaluarachchi, Jagath J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Grant S.</au><au>Peralta, Richard C.</au><au>Kaluarachchi, Jagath J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</atitle><jtitle>Advances in water resources</jtitle><date>1998-04-15</date><risdate>1998</risdate><volume>21</volume><issue>5</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0309-1708(97)00005-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 1998-04, Vol.21 (5), p.339-350 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_16409831 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | aquifers Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics equations Exact sciences and technology free-product groundwater groundwater contamination groundwater extraction hydrocarbons light non-aqueous phase liquids multiphase Natural hazards: prediction, damages, etc optimization petroleum Pollution, environment geology recovery regression equations removal simulation models simulation regression optimization model water purification wells |
title | Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20separate%20phase%20light%20hydrocarbon%20recovery%20from%20contaminated%20unconfined%20aquifers&rft.jtitle=Advances%20in%20water%20resources&rft.au=Cooper,%20Grant%20S.&rft.date=1998-04-15&rft.volume=21&rft.issue=5&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/S0309-1708(97)00005-5&rft_dat=%3Cproquest_cross%3E16409831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14485657&rft_id=info:pmid/&rft_els_id=S0309170897000055&rfr_iscdi=true |