Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 1998-04, Vol.21 (5), p.339-350
Hauptverfasser: Cooper, Grant S., Peralta, Richard C., Kaluarachchi, Jagath J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 5
container_start_page 339
container_title Advances in water resources
container_volume 21
creator Cooper, Grant S.
Peralta, Richard C.
Kaluarachchi, Jagath J.
description A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.
doi_str_mv 10.1016/S0309-1708(97)00005-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16409831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170897000055</els_id><sourcerecordid>16409831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</originalsourceid><addsrcrecordid>eNqFkUtLJDEURoM4MO3jJwzWYpCZRY25eVSSlYjMCwQX6sZNSKWT7gxVSZlUC-2vn7Qtbs0muXC-3Mu5CH0B_AMwdBd3mGLVgsDymxLfcT285QdoAVKQVnVcHKLFO_IZHZXyrzKSCbJAj7fTHMbwEuKqKW4y2cyumdamuGYIq_XcrLfLnKzJfYpNdjY9u7xtfE5jY1OczRhiTSybTaylD7E-zdMmeJfLCfrkzVDc6dt9jB5-_by__tPe3P7-e3110xrG-NxS4TtFsec9V0RZSjvZMYY574FwLr3qwIHsSc-EpMwR3lkOjABV3oIES4_R-f7fKaenjSuzHkOxbhhMdGlTNHQMK0nhY5AxyauuCvI9aHMqJTuvpxxGk7casN4p16_K9c6nVkK_Kte85r6-NTDFmsFnE20o72FCiACGK3a2x7xJ2qxyRR7uCAaKiZSYst2kl3vCVW_PwWVdbHDRumWoO5j1MoUPRvkPtK6d9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14485657</pqid></control><display><type>article</type><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</creator><creatorcontrib>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</creatorcontrib><description>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/S0309-1708(97)00005-5</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>aquifers ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; equations ; Exact sciences and technology ; free-product ; groundwater ; groundwater contamination ; groundwater extraction ; hydrocarbons ; light non-aqueous phase liquids ; multiphase ; Natural hazards: prediction, damages, etc ; optimization ; petroleum ; Pollution, environment geology ; recovery ; regression equations ; removal ; simulation models ; simulation regression optimization model ; water purification ; wells</subject><ispartof>Advances in water resources, 1998-04, Vol.21 (5), p.339-350</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</citedby><cites>FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0309-1708(97)00005-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2227140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Grant S.</creatorcontrib><creatorcontrib>Peralta, Richard C.</creatorcontrib><creatorcontrib>Kaluarachchi, Jagath J.</creatorcontrib><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><title>Advances in water resources</title><description>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</description><subject>aquifers</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>free-product</subject><subject>groundwater</subject><subject>groundwater contamination</subject><subject>groundwater extraction</subject><subject>hydrocarbons</subject><subject>light non-aqueous phase liquids</subject><subject>multiphase</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>optimization</subject><subject>petroleum</subject><subject>Pollution, environment geology</subject><subject>recovery</subject><subject>regression equations</subject><subject>removal</subject><subject>simulation models</subject><subject>simulation regression optimization model</subject><subject>water purification</subject><subject>wells</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLJDEURoM4MO3jJwzWYpCZRY25eVSSlYjMCwQX6sZNSKWT7gxVSZlUC-2vn7Qtbs0muXC-3Mu5CH0B_AMwdBd3mGLVgsDymxLfcT285QdoAVKQVnVcHKLFO_IZHZXyrzKSCbJAj7fTHMbwEuKqKW4y2cyumdamuGYIq_XcrLfLnKzJfYpNdjY9u7xtfE5jY1OczRhiTSybTaylD7E-zdMmeJfLCfrkzVDc6dt9jB5-_by__tPe3P7-e3110xrG-NxS4TtFsec9V0RZSjvZMYY574FwLr3qwIHsSc-EpMwR3lkOjABV3oIES4_R-f7fKaenjSuzHkOxbhhMdGlTNHQMK0nhY5AxyauuCvI9aHMqJTuvpxxGk7casN4p16_K9c6nVkK_Kte85r6-NTDFmsFnE20o72FCiACGK3a2x7xJ2qxyRR7uCAaKiZSYst2kl3vCVW_PwWVdbHDRumWoO5j1MoUPRvkPtK6d9A</recordid><startdate>19980415</startdate><enddate>19980415</enddate><creator>Cooper, Grant S.</creator><creator>Peralta, Richard C.</creator><creator>Kaluarachchi, Jagath J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>19980415</creationdate><title>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</title><author>Cooper, Grant S. ; Peralta, Richard C. ; Kaluarachchi, Jagath J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-37f6930f5b5929c3368644055b12558f961e18b2b47834e256c5142139fc181c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>aquifers</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>free-product</topic><topic>groundwater</topic><topic>groundwater contamination</topic><topic>groundwater extraction</topic><topic>hydrocarbons</topic><topic>light non-aqueous phase liquids</topic><topic>multiphase</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>optimization</topic><topic>petroleum</topic><topic>Pollution, environment geology</topic><topic>recovery</topic><topic>regression equations</topic><topic>removal</topic><topic>simulation models</topic><topic>simulation regression optimization model</topic><topic>water purification</topic><topic>wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Grant S.</creatorcontrib><creatorcontrib>Peralta, Richard C.</creatorcontrib><creatorcontrib>Kaluarachchi, Jagath J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Grant S.</au><au>Peralta, Richard C.</au><au>Kaluarachchi, Jagath J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers</atitle><jtitle>Advances in water resources</jtitle><date>1998-04-15</date><risdate>1998</risdate><volume>21</volume><issue>5</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0309-1708(97)00005-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 1998-04, Vol.21 (5), p.339-350
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_16409831
source ScienceDirect Journals (5 years ago - present)
subjects aquifers
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
equations
Exact sciences and technology
free-product
groundwater
groundwater contamination
groundwater extraction
hydrocarbons
light non-aqueous phase liquids
multiphase
Natural hazards: prediction, damages, etc
optimization
petroleum
Pollution, environment geology
recovery
regression equations
removal
simulation models
simulation regression optimization model
water purification
wells
title Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20separate%20phase%20light%20hydrocarbon%20recovery%20from%20contaminated%20unconfined%20aquifers&rft.jtitle=Advances%20in%20water%20resources&rft.au=Cooper,%20Grant%20S.&rft.date=1998-04-15&rft.volume=21&rft.issue=5&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/S0309-1708(97)00005-5&rft_dat=%3Cproquest_cross%3E16409831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14485657&rft_id=info:pmid/&rft_els_id=S0309170897000055&rfr_iscdi=true