Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells
Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2014-11, Vol.79 (11), p.1202-1210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1210 |
---|---|
container_issue | 11 |
container_start_page | 1202 |
container_title | Biochemistry (Moscow) |
container_volume | 79 |
creator | Fedyaeva, A. V. Stepanov, A. V. Lyubushkina, I. V. Pobezhimova, T. P. Rikhvanov, E. G. |
description | Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (
Triticum aestivum
L.) cultured cells under heat treatment. Elevation of temperature to 37–50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55–60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production. |
doi_str_mv | 10.1134/S0006297914110078 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1640688581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396431166</galeid><sourcerecordid>A396431166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-92dde552d0f0db3c892a40e926a618c7d2a3650c12235d7686defcd2c54602ad3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi1ERbeFH8AFWeLSS1p_JzlWFW2RKnEAzpHXnuy6JPZiJy0988eZaMs3yAd7Zp53_I6GkJecnXIu1dl7xpgRbd1yxTljdfOErLhhTSWZYk_JailXS_2QHJVyi6FgrXxGDoXWCiO9Il-vwU60bJP7REP0s4NCdznhYwop0tTTDBbfd0DTl4cNRFp24AJSNnpUOCwXjEKMkOkYpuS2Kfoc7EBHGNfZRqC7NEGcllSI9D7ECdH77fKxg2Eoz8lBb4cCLx7vY_Lx8s2Hi-vq5t3V24vzm8ppLaeqFd6D1sKznvm1dE0rrGLQCmMNb1zthZVGM8eFkNrXpjEeeueF08owYb08Jif7vjjg5xnK1I2hLA7QY5pLx41ipml0wxF9_Qd6m-Yc0R1SslaCC6V_Uhs7QBdin6Zs3dK0O5etUZJzY5A6_QeFx8MYXIrQB8z_JuB7gcuplAx9t8thtPmh46xbFt_9tXjUvHo0PK9H8D8U3zeNgNgDBUtxA_mXif7b9RsJebdJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637421245</pqid></control><display><type>article</type><title>Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Fedyaeva, A. V. ; Stepanov, A. V. ; Lyubushkina, I. V. ; Pobezhimova, T. P. ; Rikhvanov, E. G.</creator><creatorcontrib>Fedyaeva, A. V. ; Stepanov, A. V. ; Lyubushkina, I. V. ; Pobezhimova, T. P. ; Rikhvanov, E. G.</creatorcontrib><description>Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (
Triticum aestivum
L.) cultured cells under heat treatment. Elevation of temperature to 37–50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55–60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297914110078</identifier><identifier>PMID: 25540005</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cell Survival ; Cells, Cultured ; Cellular biology ; Chemical properties ; Electric properties ; Fluorescence ; Heat ; Heat shock proteins ; Heat treatment ; Heat-Shock Response ; Life Sciences ; Membrane Potential, Mitochondrial ; Membrane potentials ; Membranes ; Microbiology ; Mitochondria ; Mitochondrial membranes ; Oxidative stress ; Physiological aspects ; Plant mitochondria ; Properties ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stress ; Triticum - metabolism ; Triticum - physiology ; Wheat ; Winter wheat</subject><ispartof>Biochemistry (Moscow), 2014-11, Vol.79 (11), p.1202-1210</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-92dde552d0f0db3c892a40e926a618c7d2a3650c12235d7686defcd2c54602ad3</citedby><cites>FETCH-LOGICAL-c553t-92dde552d0f0db3c892a40e926a618c7d2a3650c12235d7686defcd2c54602ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297914110078$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297914110078$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25540005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><creatorcontrib>Stepanov, A. V.</creatorcontrib><creatorcontrib>Lyubushkina, I. V.</creatorcontrib><creatorcontrib>Pobezhimova, T. P.</creatorcontrib><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><title>Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (
Triticum aestivum
L.) cultured cells under heat treatment. Elevation of temperature to 37–50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55–60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Chemical properties</subject><subject>Electric properties</subject><subject>Fluorescence</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat treatment</subject><subject>Heat-Shock Response</subject><subject>Life Sciences</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membrane potentials</subject><subject>Membranes</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Mitochondrial membranes</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Plant mitochondria</subject><subject>Properties</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stress</subject><subject>Triticum - metabolism</subject><subject>Triticum - physiology</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhi1ERbeFH8AFWeLSS1p_JzlWFW2RKnEAzpHXnuy6JPZiJy0988eZaMs3yAd7Zp53_I6GkJecnXIu1dl7xpgRbd1yxTljdfOErLhhTSWZYk_JailXS_2QHJVyi6FgrXxGDoXWCiO9Il-vwU60bJP7REP0s4NCdznhYwop0tTTDBbfd0DTl4cNRFp24AJSNnpUOCwXjEKMkOkYpuS2Kfoc7EBHGNfZRqC7NEGcllSI9D7ECdH77fKxg2Eoz8lBb4cCLx7vY_Lx8s2Hi-vq5t3V24vzm8ppLaeqFd6D1sKznvm1dE0rrGLQCmMNb1zthZVGM8eFkNrXpjEeeueF08owYb08Jif7vjjg5xnK1I2hLA7QY5pLx41ipml0wxF9_Qd6m-Yc0R1SslaCC6V_Uhs7QBdin6Zs3dK0O5etUZJzY5A6_QeFx8MYXIrQB8z_JuB7gcuplAx9t8thtPmh46xbFt_9tXjUvHo0PK9H8D8U3zeNgNgDBUtxA_mXif7b9RsJebdJ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Fedyaeva, A. V.</creator><creator>Stepanov, A. V.</creator><creator>Lyubushkina, I. V.</creator><creator>Pobezhimova, T. P.</creator><creator>Rikhvanov, E. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells</title><author>Fedyaeva, A. V. ; Stepanov, A. V. ; Lyubushkina, I. V. ; Pobezhimova, T. P. ; Rikhvanov, E. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-92dde552d0f0db3c892a40e926a618c7d2a3650c12235d7686defcd2c54602ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Chemical properties</topic><topic>Electric properties</topic><topic>Fluorescence</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat treatment</topic><topic>Heat-Shock Response</topic><topic>Life Sciences</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membrane potentials</topic><topic>Membranes</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Mitochondrial membranes</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Plant mitochondria</topic><topic>Properties</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stress</topic><topic>Triticum - metabolism</topic><topic>Triticum - physiology</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><creatorcontrib>Stepanov, A. V.</creatorcontrib><creatorcontrib>Lyubushkina, I. V.</creatorcontrib><creatorcontrib>Pobezhimova, T. P.</creatorcontrib><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedyaeva, A. V.</au><au>Stepanov, A. V.</au><au>Lyubushkina, I. V.</au><au>Pobezhimova, T. P.</au><au>Rikhvanov, E. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>79</volume><issue>11</issue><spage>1202</spage><epage>1210</epage><pages>1202-1210</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (
Triticum aestivum
L.) cultured cells under heat treatment. Elevation of temperature to 37–50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55–60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>25540005</pmid><doi>10.1134/S0006297914110078</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2014-11, Vol.79 (11), p.1202-1210 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_1640688581 |
source | MEDLINE; SpringerNature Journals |
subjects | Analysis Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Cell Survival Cells, Cultured Cellular biology Chemical properties Electric properties Fluorescence Heat Heat shock proteins Heat treatment Heat-Shock Response Life Sciences Membrane Potential, Mitochondrial Membrane potentials Membranes Microbiology Mitochondria Mitochondrial membranes Oxidative stress Physiological aspects Plant mitochondria Properties Reactive oxygen species Reactive Oxygen Species - metabolism Stress Triticum - metabolism Triticum - physiology Wheat Winter wheat |
title | Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20shock%20induces%20production%20of%20reactive%20oxygen%20species%20and%20increases%20inner%20mitochondrial%20membrane%20potential%20in%20winter%20wheat%20cells&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Fedyaeva,%20A.%20V.&rft.date=2014-11-01&rft.volume=79&rft.issue=11&rft.spage=1202&rft.epage=1210&rft.pages=1202-1210&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297914110078&rft_dat=%3Cgale_proqu%3EA396431166%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637421245&rft_id=info:pmid/25540005&rft_galeid=A396431166&rfr_iscdi=true |