Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)

Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthropod structure & development 2014-11, Vol.43 (6), p.571-578
Hauptverfasser: Gutiérrez-Cabrera, Ana E., Alejandre-Aguilar, Ricardo, Hernández-Martínez, Salvador, Espinoza, Bertha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 6
container_start_page 571
container_title Arthropod structure & development
container_volume 43
creator Gutiérrez-Cabrera, Ana E.
Alejandre-Aguilar, Ricardo
Hernández-Martínez, Salvador
Espinoza, Bertha
description Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. [Display omitted] •Important midgut changes after starvation and feeding in Triatoma pallidipennis.•The midgut's perimicrovillar membrane formation in Triatomine.•Rich glycoconjugate composition in perimicrovillar membrane of Mexican Chagas Diseases vector.
doi_str_mv 10.1016/j.asd.2014.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639994293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1467803914000632</els_id><sourcerecordid>1629959250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8fea4515b83e645e77f1f945ee38226771b9742b3d4e005d78dc488242209fb43</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0Eoj_wAGyQl7eLBP_GMayqUihSERIqa8uxJ-CrJA62c6WueXFc3cISsZpZfHOkOR9CryhpKaHdm31rs28ZoaIlqiWEPkGntFe8kULLp3UXnWp6wvUJOst5TwhRTKrn6IRJInivxSn69R4OMMV1hqVgu3j8fbp3cU2xQFiwi_MacyghLjiOuPwAvEIKc3ApHsI02YRnmIdkF8AVv0vBljhbvPsMzm35Aq92moIPKyxLyHh3A3NYCyT7Fn8Fvx1C8BYuXqBno50yvHyc5-jbh-u7q5vm9svHT1eXt40TsitNP4IVksqh59AJCUqNdNR1Ad4z1ilFB60EG7gXQIj0qvdO9D0TjBE9DoKfo90xt773c4NczByyg_rGAnHLhnZcay2Y5v-BMq2lrj1WlB7R2knOCUaz1oZsujeUmAdNZm-qJvOgyRBlqqZ68_oxfhtm8H8v_nipwLsjALWPQ4BksguwOPAhgSvGx_CP-N8vqqPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629959250</pqid></control><display><type>article</type><title>Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Gutiérrez-Cabrera, Ana E. ; Alejandre-Aguilar, Ricardo ; Hernández-Martínez, Salvador ; Espinoza, Bertha</creator><creatorcontrib>Gutiérrez-Cabrera, Ana E. ; Alejandre-Aguilar, Ricardo ; Hernández-Martínez, Salvador ; Espinoza, Bertha</creatorcontrib><description>Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. [Display omitted] •Important midgut changes after starvation and feeding in Triatoma pallidipennis.•The midgut's perimicrovillar membrane formation in Triatomine.•Rich glycoconjugate composition in perimicrovillar membrane of Mexican Chagas Diseases vector.</description><identifier>ISSN: 1467-8039</identifier><identifier>EISSN: 1873-5495</identifier><identifier>DOI: 10.1016/j.asd.2014.07.001</identifier><identifier>PMID: 25043894</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Arthropoda ; Digestive System - chemistry ; Digestive System - cytology ; Digestive System - growth &amp; development ; Glycoproteins ; Hemiptera ; Insect Vectors - chemistry ; Insect Vectors - growth &amp; development ; Insect Vectors - ultrastructure ; Membranes - chemistry ; Membranes - growth &amp; development ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Perimicrovilla membrane ; Reduviidae ; Triatoma ; Triatoma (Meccus) pallidipennis ; Triatoma - chemistry ; Triatoma - growth &amp; development ; Triatoma - ultrastructure ; Trypanosoma cruzi</subject><ispartof>Arthropod structure &amp; development, 2014-11, Vol.43 (6), p.571-578</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8fea4515b83e645e77f1f945ee38226771b9742b3d4e005d78dc488242209fb43</citedby><cites>FETCH-LOGICAL-c456t-8fea4515b83e645e77f1f945ee38226771b9742b3d4e005d78dc488242209fb43</cites><orcidid>0000-0003-4930-2440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asd.2014.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25043894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutiérrez-Cabrera, Ana E.</creatorcontrib><creatorcontrib>Alejandre-Aguilar, Ricardo</creatorcontrib><creatorcontrib>Hernández-Martínez, Salvador</creatorcontrib><creatorcontrib>Espinoza, Bertha</creatorcontrib><title>Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)</title><title>Arthropod structure &amp; development</title><addtitle>Arthropod Struct Dev</addtitle><description>Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. [Display omitted] •Important midgut changes after starvation and feeding in Triatoma pallidipennis.•The midgut's perimicrovillar membrane formation in Triatomine.•Rich glycoconjugate composition in perimicrovillar membrane of Mexican Chagas Diseases vector.</description><subject>Animals</subject><subject>Arthropoda</subject><subject>Digestive System - chemistry</subject><subject>Digestive System - cytology</subject><subject>Digestive System - growth &amp; development</subject><subject>Glycoproteins</subject><subject>Hemiptera</subject><subject>Insect Vectors - chemistry</subject><subject>Insect Vectors - growth &amp; development</subject><subject>Insect Vectors - ultrastructure</subject><subject>Membranes - chemistry</subject><subject>Membranes - growth &amp; development</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Perimicrovilla membrane</subject><subject>Reduviidae</subject><subject>Triatoma</subject><subject>Triatoma (Meccus) pallidipennis</subject><subject>Triatoma - chemistry</subject><subject>Triatoma - growth &amp; development</subject><subject>Triatoma - ultrastructure</subject><subject>Trypanosoma cruzi</subject><issn>1467-8039</issn><issn>1873-5495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0Eoj_wAGyQl7eLBP_GMayqUihSERIqa8uxJ-CrJA62c6WueXFc3cISsZpZfHOkOR9CryhpKaHdm31rs28ZoaIlqiWEPkGntFe8kULLp3UXnWp6wvUJOst5TwhRTKrn6IRJInivxSn69R4OMMV1hqVgu3j8fbp3cU2xQFiwi_MacyghLjiOuPwAvEIKc3ApHsI02YRnmIdkF8AVv0vBljhbvPsMzm35Aq92moIPKyxLyHh3A3NYCyT7Fn8Fvx1C8BYuXqBno50yvHyc5-jbh-u7q5vm9svHT1eXt40TsitNP4IVksqh59AJCUqNdNR1Ad4z1ilFB60EG7gXQIj0qvdO9D0TjBE9DoKfo90xt773c4NczByyg_rGAnHLhnZcay2Y5v-BMq2lrj1WlB7R2knOCUaz1oZsujeUmAdNZm-qJvOgyRBlqqZ68_oxfhtm8H8v_nipwLsjALWPQ4BksguwOPAhgSvGx_CP-N8vqqPN</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Gutiérrez-Cabrera, Ana E.</creator><creator>Alejandre-Aguilar, Ricardo</creator><creator>Hernández-Martínez, Salvador</creator><creator>Espinoza, Bertha</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4930-2440</orcidid></search><sort><creationdate>20141101</creationdate><title>Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)</title><author>Gutiérrez-Cabrera, Ana E. ; Alejandre-Aguilar, Ricardo ; Hernández-Martínez, Salvador ; Espinoza, Bertha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8fea4515b83e645e77f1f945ee38226771b9742b3d4e005d78dc488242209fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Arthropoda</topic><topic>Digestive System - chemistry</topic><topic>Digestive System - cytology</topic><topic>Digestive System - growth &amp; development</topic><topic>Glycoproteins</topic><topic>Hemiptera</topic><topic>Insect Vectors - chemistry</topic><topic>Insect Vectors - growth &amp; development</topic><topic>Insect Vectors - ultrastructure</topic><topic>Membranes - chemistry</topic><topic>Membranes - growth &amp; development</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Perimicrovilla membrane</topic><topic>Reduviidae</topic><topic>Triatoma</topic><topic>Triatoma (Meccus) pallidipennis</topic><topic>Triatoma - chemistry</topic><topic>Triatoma - growth &amp; development</topic><topic>Triatoma - ultrastructure</topic><topic>Trypanosoma cruzi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez-Cabrera, Ana E.</creatorcontrib><creatorcontrib>Alejandre-Aguilar, Ricardo</creatorcontrib><creatorcontrib>Hernández-Martínez, Salvador</creatorcontrib><creatorcontrib>Espinoza, Bertha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arthropod structure &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez-Cabrera, Ana E.</au><au>Alejandre-Aguilar, Ricardo</au><au>Hernández-Martínez, Salvador</au><au>Espinoza, Bertha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)</atitle><jtitle>Arthropod structure &amp; development</jtitle><addtitle>Arthropod Struct Dev</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>43</volume><issue>6</issue><spage>571</spage><epage>578</epage><pages>571-578</pages><issn>1467-8039</issn><eissn>1873-5495</eissn><abstract>Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. [Display omitted] •Important midgut changes after starvation and feeding in Triatoma pallidipennis.•The midgut's perimicrovillar membrane formation in Triatomine.•Rich glycoconjugate composition in perimicrovillar membrane of Mexican Chagas Diseases vector.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25043894</pmid><doi>10.1016/j.asd.2014.07.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4930-2440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1467-8039
ispartof Arthropod structure & development, 2014-11, Vol.43 (6), p.571-578
issn 1467-8039
1873-5495
language eng
recordid cdi_proquest_miscellaneous_1639994293
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Arthropoda
Digestive System - chemistry
Digestive System - cytology
Digestive System - growth & development
Glycoproteins
Hemiptera
Insect Vectors - chemistry
Insect Vectors - growth & development
Insect Vectors - ultrastructure
Membranes - chemistry
Membranes - growth & development
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Perimicrovilla membrane
Reduviidae
Triatoma
Triatoma (Meccus) pallidipennis
Triatoma - chemistry
Triatoma - growth & development
Triatoma - ultrastructure
Trypanosoma cruzi
title Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20glycoprotein%20composition%20of%20the%20perimicrovillar%20membrane%20in%20Triatoma%20(Meccus)%20pallidipennis%20(Hemiptera:%20Reduviidae)&rft.jtitle=Arthropod%20structure%20&%20development&rft.au=Guti%C3%A9rrez-Cabrera,%20Ana%20E.&rft.date=2014-11-01&rft.volume=43&rft.issue=6&rft.spage=571&rft.epage=578&rft.pages=571-578&rft.issn=1467-8039&rft.eissn=1873-5495&rft_id=info:doi/10.1016/j.asd.2014.07.001&rft_dat=%3Cproquest_cross%3E1629959250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629959250&rft_id=info:pmid/25043894&rft_els_id=S1467803914000632&rfr_iscdi=true