Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma
Anaplastic large-cell lymphomas (ALCLs) are a group of clinically and biologically heterogeneous diseases including the ALK+ and ALK− systemic forms. Whereas ALK+ ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK− ALCL are m...
Gespeichert in:
Veröffentlicht in: | Blood 2012-08, Vol.120 (6), p.1274-1281 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anaplastic large-cell lymphomas (ALCLs) are a group of clinically and biologically heterogeneous diseases including the ALK+ and ALK− systemic forms. Whereas ALK+ ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK− ALCL are missing, and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial. In the present study, we undertook a transcriptional profiling meta-analysis of 309 cases, including ALCL and other primary T-NHL samples. Pathway discovery and prediction analyses defined a minimum set of genes capable of recognizing ALK− ALCL. Application of quantitative RT-PCR in independent datasets from cryopreserved and formalin-fixed paraffin-embedded samples validated a 3-gene model (TNFRSF8, BATF3, and TMOD1) able to successfully separate ALK− ALCL from peripheral T-cell lymphoma not otherwise specified, with overall accuracy near 97%. In conclusion, our data justify the possibility of translating quantitative RT-PCR protocols to routine clinical settings as a new approach to objectively dissect T-NHL and to select more appropriate therapeutic protocols. |
---|---|
ISSN: | 0006-4971 1528-0020 1528-0020 |
DOI: | 10.1182/blood-2012-01-405555 |