Strengthening confidence in climate change impact science

Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2015-01, Vol.24 (1), p.64-76
Hauptverfasser: O'Connor, Mary I., Holding, Johnna M., Kappel, Carrie V., Duarte, Carlos M., Brander, Keith, Brown, Christopher J., Bruno, John F., Buckley, Lauren, Burrows, Michael T., Halpern, Benjamin S., Kiessling, Wolfgang, Moore, Pippa, Pandolfi, John M., Parmesan, Camille, Poloczanska, Elvira S., Schoeman, David S., Sydeman, William J., Richardson, Anthony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 64
container_title Global ecology and biogeography
container_volume 24
creator O'Connor, Mary I.
Holding, Johnna M.
Kappel, Carrie V.
Duarte, Carlos M.
Brander, Keith
Brown, Christopher J.
Bruno, John F.
Buckley, Lauren
Burrows, Michael T.
Halpern, Benjamin S.
Kiessling, Wolfgang
Moore, Pippa
Pandolfi, John M.
Parmesan, Camille
Poloczanska, Elvira S.
Schoeman, David S.
Sydeman, William J.
Richardson, Anthony J.
description Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature.
doi_str_mv 10.1111/geb.12218
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639982900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43871470</jstor_id><sourcerecordid>43871470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4258-49d34ac9ed66ef230836a335c95da8a2982e742aadb0ed250561c911d17abd633</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhSdGExFd-ANMJnGji4E-ZvpYKkE0IboAI3HTlM4FBocOtkOUf29xlIWJ3dym9zun954oOseog8PpzmHawYRgcRC1cMpYIggVh_s7mRxHJ94vEUJZmrFWJEe1AzuvF2ALO49NZWdFDtZAXNjYlMVK1xCbhbbz8LJaa1PH3hQ74DQ6munSw9lPbUfPd_1x7z4ZPg0eejfDxKQkE0kqc5pqIyFnDGaEIkGZpjQzMsu10EQKAjwlWudTBDnJUMawkRjnmOtpzihtR1eN79pV7xvwtVoV3kBZagvVxivMqAwmEqGAXv5Bl9XG2TBdoHY_Cc5loK4byrjKewcztXZhT7dVGKldiCqEqL5DDGy3YT-KErb_g2rQv_1VXDSKpa8rt1ekVHCc8t2MSdMvfA2f-752b4pxyjP18jhQj-Mxm3D8qkb0C_q7ikM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629828779</pqid></control><display><type>article</type><title>Strengthening confidence in climate change impact science</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>O'Connor, Mary I. ; Holding, Johnna M. ; Kappel, Carrie V. ; Duarte, Carlos M. ; Brander, Keith ; Brown, Christopher J. ; Bruno, John F. ; Buckley, Lauren ; Burrows, Michael T. ; Halpern, Benjamin S. ; Kiessling, Wolfgang ; Moore, Pippa ; Pandolfi, John M. ; Parmesan, Camille ; Poloczanska, Elvira S. ; Schoeman, David S. ; Sydeman, William J. ; Richardson, Anthony J.</creator><creatorcontrib>O'Connor, Mary I. ; Holding, Johnna M. ; Kappel, Carrie V. ; Duarte, Carlos M. ; Brander, Keith ; Brown, Christopher J. ; Bruno, John F. ; Buckley, Lauren ; Burrows, Michael T. ; Halpern, Benjamin S. ; Kiessling, Wolfgang ; Moore, Pippa ; Pandolfi, John M. ; Parmesan, Camille ; Poloczanska, Elvira S. ; Schoeman, David S. ; Sydeman, William J. ; Richardson, Anthony J.</creatorcontrib><description>Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.12218</identifier><identifier>CODEN: GEBIFS</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Abundance ; attribution ; Climate change ; Confidence ; distribution ; hypothesis ; impacts ; marine ; META-ANALYSIS ; phenology ; scientific method ; Time series</subject><ispartof>Global ecology and biogeography, 2015-01, Vol.24 (1), p.64-76</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons Ltd.</rights><rights>2014 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4258-49d34ac9ed66ef230836a335c95da8a2982e742aadb0ed250561c911d17abd633</citedby><cites>FETCH-LOGICAL-c4258-49d34ac9ed66ef230836a335c95da8a2982e742aadb0ed250561c911d17abd633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43871470$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43871470$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>O'Connor, Mary I.</creatorcontrib><creatorcontrib>Holding, Johnna M.</creatorcontrib><creatorcontrib>Kappel, Carrie V.</creatorcontrib><creatorcontrib>Duarte, Carlos M.</creatorcontrib><creatorcontrib>Brander, Keith</creatorcontrib><creatorcontrib>Brown, Christopher J.</creatorcontrib><creatorcontrib>Bruno, John F.</creatorcontrib><creatorcontrib>Buckley, Lauren</creatorcontrib><creatorcontrib>Burrows, Michael T.</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Kiessling, Wolfgang</creatorcontrib><creatorcontrib>Moore, Pippa</creatorcontrib><creatorcontrib>Pandolfi, John M.</creatorcontrib><creatorcontrib>Parmesan, Camille</creatorcontrib><creatorcontrib>Poloczanska, Elvira S.</creatorcontrib><creatorcontrib>Schoeman, David S.</creatorcontrib><creatorcontrib>Sydeman, William J.</creatorcontrib><creatorcontrib>Richardson, Anthony J.</creatorcontrib><title>Strengthening confidence in climate change impact science</title><title>Global ecology and biogeography</title><addtitle>Global Ecology and Biogeography</addtitle><description>Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature.</description><subject>Abundance</subject><subject>attribution</subject><subject>Climate change</subject><subject>Confidence</subject><subject>distribution</subject><subject>hypothesis</subject><subject>impacts</subject><subject>marine</subject><subject>META-ANALYSIS</subject><subject>phenology</subject><subject>scientific method</subject><subject>Time series</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtPAjEUhSdGExFd-ANMJnGji4E-ZvpYKkE0IboAI3HTlM4FBocOtkOUf29xlIWJ3dym9zun954oOseog8PpzmHawYRgcRC1cMpYIggVh_s7mRxHJ94vEUJZmrFWJEe1AzuvF2ALO49NZWdFDtZAXNjYlMVK1xCbhbbz8LJaa1PH3hQ74DQ6munSw9lPbUfPd_1x7z4ZPg0eejfDxKQkE0kqc5pqIyFnDGaEIkGZpjQzMsu10EQKAjwlWudTBDnJUMawkRjnmOtpzihtR1eN79pV7xvwtVoV3kBZagvVxivMqAwmEqGAXv5Bl9XG2TBdoHY_Cc5loK4byrjKewcztXZhT7dVGKldiCqEqL5DDGy3YT-KErb_g2rQv_1VXDSKpa8rt1ekVHCc8t2MSdMvfA2f-752b4pxyjP18jhQj-Mxm3D8qkb0C_q7ikM</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>O'Connor, Mary I.</creator><creator>Holding, Johnna M.</creator><creator>Kappel, Carrie V.</creator><creator>Duarte, Carlos M.</creator><creator>Brander, Keith</creator><creator>Brown, Christopher J.</creator><creator>Bruno, John F.</creator><creator>Buckley, Lauren</creator><creator>Burrows, Michael T.</creator><creator>Halpern, Benjamin S.</creator><creator>Kiessling, Wolfgang</creator><creator>Moore, Pippa</creator><creator>Pandolfi, John M.</creator><creator>Parmesan, Camille</creator><creator>Poloczanska, Elvira S.</creator><creator>Schoeman, David S.</creator><creator>Sydeman, William J.</creator><creator>Richardson, Anthony J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201501</creationdate><title>Strengthening confidence in climate change impact science</title><author>O'Connor, Mary I. ; Holding, Johnna M. ; Kappel, Carrie V. ; Duarte, Carlos M. ; Brander, Keith ; Brown, Christopher J. ; Bruno, John F. ; Buckley, Lauren ; Burrows, Michael T. ; Halpern, Benjamin S. ; Kiessling, Wolfgang ; Moore, Pippa ; Pandolfi, John M. ; Parmesan, Camille ; Poloczanska, Elvira S. ; Schoeman, David S. ; Sydeman, William J. ; Richardson, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4258-49d34ac9ed66ef230836a335c95da8a2982e742aadb0ed250561c911d17abd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abundance</topic><topic>attribution</topic><topic>Climate change</topic><topic>Confidence</topic><topic>distribution</topic><topic>hypothesis</topic><topic>impacts</topic><topic>marine</topic><topic>META-ANALYSIS</topic><topic>phenology</topic><topic>scientific method</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connor, Mary I.</creatorcontrib><creatorcontrib>Holding, Johnna M.</creatorcontrib><creatorcontrib>Kappel, Carrie V.</creatorcontrib><creatorcontrib>Duarte, Carlos M.</creatorcontrib><creatorcontrib>Brander, Keith</creatorcontrib><creatorcontrib>Brown, Christopher J.</creatorcontrib><creatorcontrib>Bruno, John F.</creatorcontrib><creatorcontrib>Buckley, Lauren</creatorcontrib><creatorcontrib>Burrows, Michael T.</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Kiessling, Wolfgang</creatorcontrib><creatorcontrib>Moore, Pippa</creatorcontrib><creatorcontrib>Pandolfi, John M.</creatorcontrib><creatorcontrib>Parmesan, Camille</creatorcontrib><creatorcontrib>Poloczanska, Elvira S.</creatorcontrib><creatorcontrib>Schoeman, David S.</creatorcontrib><creatorcontrib>Sydeman, William J.</creatorcontrib><creatorcontrib>Richardson, Anthony J.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connor, Mary I.</au><au>Holding, Johnna M.</au><au>Kappel, Carrie V.</au><au>Duarte, Carlos M.</au><au>Brander, Keith</au><au>Brown, Christopher J.</au><au>Bruno, John F.</au><au>Buckley, Lauren</au><au>Burrows, Michael T.</au><au>Halpern, Benjamin S.</au><au>Kiessling, Wolfgang</au><au>Moore, Pippa</au><au>Pandolfi, John M.</au><au>Parmesan, Camille</au><au>Poloczanska, Elvira S.</au><au>Schoeman, David S.</au><au>Sydeman, William J.</au><au>Richardson, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening confidence in climate change impact science</atitle><jtitle>Global ecology and biogeography</jtitle><addtitle>Global Ecology and Biogeography</addtitle><date>2015-01</date><risdate>2015</risdate><volume>24</volume><issue>1</issue><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><coden>GEBIFS</coden><abstract>Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/geb.12218</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2015-01, Vol.24 (1), p.64-76
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_miscellaneous_1639982900
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Abundance
attribution
Climate change
Confidence
distribution
hypothesis
impacts
marine
META-ANALYSIS
phenology
scientific method
Time series
title Strengthening confidence in climate change impact science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20confidence%20in%20climate%20change%20impact%20science&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=O'Connor,%20Mary%20I.&rft.date=2015-01&rft.volume=24&rft.issue=1&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=1466-822X&rft.eissn=1466-8238&rft.coden=GEBIFS&rft_id=info:doi/10.1111/geb.12218&rft_dat=%3Cjstor_proqu%3E43871470%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629828779&rft_id=info:pmid/&rft_jstor_id=43871470&rfr_iscdi=true