The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR
Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2015-01, Vol.95 (1), p.17-30 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Molecular microbiology |
container_volume | 95 |
creator | Bush, Matt Ghosh, Tamaswati Sawicka, Marta Moal, Iain H. Bates, Paul A. Dixon, Ray Zhang, Xiaodong |
description | Summary
σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR. |
doi_str_mv | 10.1111/mmi.12844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639982251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1639982251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</originalsourceid><addsrcrecordid>eNp10ctKxDAUgOEgio6XhS8gATe66JhLk6bLYfAy4AVEwV1JMydMpW3GpFVm5yP4jD6JGWd0IZjNWeTjJ-QgdEjJkMZz1jTVkDKVphtoQLkUCcuF2kQDkguScMWedtBuCM-EUE4k30Y7THCREp4NkHuYAQ6d703Xe13jUocqYOs8hnamWwP-8_1jCnNop9B2WIcATVkvsG6nWJuuetVd5VrsLO5iaDQa4c7rNhhfzZcXsbhWsXjr_P0-2rK6DnCwnnvo8eL8YXyVXN9dTsaj68RwpdIko6ZUac6tEJm0nCsKVkMGwhLJaEkzmVkBpZKZkMqUkgqbcwpABEimDeF76GTVnXv30kPoiqYKBupat-D6UFDJ81wxJmikx3_os-t9fPpSpWkmBGMqqtOVMt6F4MEWc1812i8KSorlFoq4heJ7C9EerYt92cD0V_58ewRnK_BW1bD4v1Tc3ExWyS9kaZJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644755228</pqid></control><display><type>article</type><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</creator><creatorcontrib>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</creatorcontrib><description>Summary
σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12844</identifier><identifier>PMID: 25354037</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding sites ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - metabolism ; Microbiology ; Models, Molecular ; Molecular Docking Simulation ; Nitric Oxide - metabolism ; Proteins ; Regulatory Sequences, Nucleic Acid ; Ribonucleic acid ; RNA ; RNA Polymerase Sigma 54 - genetics ; RNA Polymerase Sigma 54 - metabolism ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism</subject><ispartof>Molecular microbiology, 2015-01, Vol.95 (1), p.17-30</ispartof><rights>2014 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</citedby><cites>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</cites><orcidid>0000-0002-4960-5487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12844$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12844$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25354037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Matt</creatorcontrib><creatorcontrib>Ghosh, Tamaswati</creatorcontrib><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</description><subject>Adenosine triphosphatase</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Nitric Oxide - metabolism</subject><subject>Proteins</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Polymerase Sigma 54 - genetics</subject><subject>RNA Polymerase Sigma 54 - metabolism</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp10ctKxDAUgOEgio6XhS8gATe66JhLk6bLYfAy4AVEwV1JMydMpW3GpFVm5yP4jD6JGWd0IZjNWeTjJ-QgdEjJkMZz1jTVkDKVphtoQLkUCcuF2kQDkguScMWedtBuCM-EUE4k30Y7THCREp4NkHuYAQ6d703Xe13jUocqYOs8hnamWwP-8_1jCnNop9B2WIcATVkvsG6nWJuuetVd5VrsLO5iaDQa4c7rNhhfzZcXsbhWsXjr_P0-2rK6DnCwnnvo8eL8YXyVXN9dTsaj68RwpdIko6ZUac6tEJm0nCsKVkMGwhLJaEkzmVkBpZKZkMqUkgqbcwpABEimDeF76GTVnXv30kPoiqYKBupat-D6UFDJ81wxJmikx3_os-t9fPpSpWkmBGMqqtOVMt6F4MEWc1812i8KSorlFoq4heJ7C9EerYt92cD0V_58ewRnK_BW1bD4v1Tc3ExWyS9kaZJN</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Bush, Matt</creator><creator>Ghosh, Tamaswati</creator><creator>Sawicka, Marta</creator><creator>Moal, Iain H.</creator><creator>Bates, Paul A.</creator><creator>Dixon, Ray</creator><creator>Zhang, Xiaodong</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4960-5487</orcidid></search><sort><creationdate>201501</creationdate><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><author>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphatase</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Nitric Oxide - metabolism</topic><topic>Proteins</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Polymerase Sigma 54 - genetics</topic><topic>RNA Polymerase Sigma 54 - metabolism</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Matt</creatorcontrib><creatorcontrib>Ghosh, Tamaswati</creatorcontrib><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Matt</au><au>Ghosh, Tamaswati</au><au>Sawicka, Marta</au><au>Moal, Iain H.</au><au>Bates, Paul A.</au><au>Dixon, Ray</au><au>Zhang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>95</volume><issue>1</issue><spage>17</spage><epage>30</epage><pages>17-30</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25354037</pmid><doi>10.1111/mmi.12844</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4960-5487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2015-01, Vol.95 (1), p.17-30 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_1639982251 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine triphosphatase Bacteria - genetics Bacteria - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding sites Deoxyribonucleic acid DNA DNA, Bacterial - metabolism Microbiology Models, Molecular Molecular Docking Simulation Nitric Oxide - metabolism Proteins Regulatory Sequences, Nucleic Acid Ribonucleic acid RNA RNA Polymerase Sigma 54 - genetics RNA Polymerase Sigma 54 - metabolism Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism |
title | The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20basis%20for%20enhancer%E2%80%90dependent%20assembly%20and%20activation%20of%20the%20AAA%20transcriptional%20activator%20NorR&rft.jtitle=Molecular%20microbiology&rft.au=Bush,%20Matt&rft.date=2015-01&rft.volume=95&rft.issue=1&rft.spage=17&rft.epage=30&rft.pages=17-30&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12844&rft_dat=%3Cproquest_cross%3E1639982251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644755228&rft_id=info:pmid/25354037&rfr_iscdi=true |