The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR

Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2015-01, Vol.95 (1), p.17-30
Hauptverfasser: Bush, Matt, Ghosh, Tamaswati, Sawicka, Marta, Moal, Iain H., Bates, Paul A., Dixon, Ray, Zhang, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 17
container_title Molecular microbiology
container_volume 95
creator Bush, Matt
Ghosh, Tamaswati
Sawicka, Marta
Moal, Iain H.
Bates, Paul A.
Dixon, Ray
Zhang, Xiaodong
description Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.
doi_str_mv 10.1111/mmi.12844
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639982251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1639982251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</originalsourceid><addsrcrecordid>eNp10ctKxDAUgOEgio6XhS8gATe66JhLk6bLYfAy4AVEwV1JMydMpW3GpFVm5yP4jD6JGWd0IZjNWeTjJ-QgdEjJkMZz1jTVkDKVphtoQLkUCcuF2kQDkguScMWedtBuCM-EUE4k30Y7THCREp4NkHuYAQ6d703Xe13jUocqYOs8hnamWwP-8_1jCnNop9B2WIcATVkvsG6nWJuuetVd5VrsLO5iaDQa4c7rNhhfzZcXsbhWsXjr_P0-2rK6DnCwnnvo8eL8YXyVXN9dTsaj68RwpdIko6ZUac6tEJm0nCsKVkMGwhLJaEkzmVkBpZKZkMqUkgqbcwpABEimDeF76GTVnXv30kPoiqYKBupat-D6UFDJ81wxJmikx3_os-t9fPpSpWkmBGMqqtOVMt6F4MEWc1812i8KSorlFoq4heJ7C9EerYt92cD0V_58ewRnK_BW1bD4v1Tc3ExWyS9kaZJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644755228</pqid></control><display><type>article</type><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</creator><creatorcontrib>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</creatorcontrib><description>Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12844</identifier><identifier>PMID: 25354037</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding sites ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - metabolism ; Microbiology ; Models, Molecular ; Molecular Docking Simulation ; Nitric Oxide - metabolism ; Proteins ; Regulatory Sequences, Nucleic Acid ; Ribonucleic acid ; RNA ; RNA Polymerase Sigma 54 - genetics ; RNA Polymerase Sigma 54 - metabolism ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism</subject><ispartof>Molecular microbiology, 2015-01, Vol.95 (1), p.17-30</ispartof><rights>2014 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2014 The Authors. Molecular Microbiology published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</citedby><cites>FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</cites><orcidid>0000-0002-4960-5487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12844$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12844$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25354037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Matt</creatorcontrib><creatorcontrib>Ghosh, Tamaswati</creatorcontrib><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</description><subject>Adenosine triphosphatase</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - metabolism</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Nitric Oxide - metabolism</subject><subject>Proteins</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Polymerase Sigma 54 - genetics</subject><subject>RNA Polymerase Sigma 54 - metabolism</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp10ctKxDAUgOEgio6XhS8gATe66JhLk6bLYfAy4AVEwV1JMydMpW3GpFVm5yP4jD6JGWd0IZjNWeTjJ-QgdEjJkMZz1jTVkDKVphtoQLkUCcuF2kQDkguScMWedtBuCM-EUE4k30Y7THCREp4NkHuYAQ6d703Xe13jUocqYOs8hnamWwP-8_1jCnNop9B2WIcATVkvsG6nWJuuetVd5VrsLO5iaDQa4c7rNhhfzZcXsbhWsXjr_P0-2rK6DnCwnnvo8eL8YXyVXN9dTsaj68RwpdIko6ZUac6tEJm0nCsKVkMGwhLJaEkzmVkBpZKZkMqUkgqbcwpABEimDeF76GTVnXv30kPoiqYKBupat-D6UFDJ81wxJmikx3_os-t9fPpSpWkmBGMqqtOVMt6F4MEWc1812i8KSorlFoq4heJ7C9EerYt92cD0V_58ewRnK_BW1bD4v1Tc3ExWyS9kaZJN</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Bush, Matt</creator><creator>Ghosh, Tamaswati</creator><creator>Sawicka, Marta</creator><creator>Moal, Iain H.</creator><creator>Bates, Paul A.</creator><creator>Dixon, Ray</creator><creator>Zhang, Xiaodong</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4960-5487</orcidid></search><sort><creationdate>201501</creationdate><title>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</title><author>Bush, Matt ; Ghosh, Tamaswati ; Sawicka, Marta ; Moal, Iain H. ; Bates, Paul A. ; Dixon, Ray ; Zhang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-71cb8493f5576f3381efae7e5f0621b1767f5eb867568cb615f931ee05e62ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphatase</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - metabolism</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Nitric Oxide - metabolism</topic><topic>Proteins</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Polymerase Sigma 54 - genetics</topic><topic>RNA Polymerase Sigma 54 - metabolism</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Matt</creatorcontrib><creatorcontrib>Ghosh, Tamaswati</creatorcontrib><creatorcontrib>Sawicka, Marta</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Matt</au><au>Ghosh, Tamaswati</au><au>Sawicka, Marta</au><au>Moal, Iain H.</au><au>Bates, Paul A.</au><au>Dixon, Ray</au><au>Zhang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>95</volume><issue>1</issue><spage>17</spage><epage>30</epage><pages>17-30</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary σ54‐dependent transcription controls a wide range of stress‐related genes in bacteria and is tightly regulated. In contrast to σ70, the σ54‐RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N‐terminal regulatory domain, a central AAA domain and a C‐terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter‐dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N‐terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25354037</pmid><doi>10.1111/mmi.12844</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4960-5487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2015-01, Vol.95 (1), p.17-30
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_1639982251
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine triphosphatase
Bacteria - genetics
Bacteria - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding sites
Deoxyribonucleic acid
DNA
DNA, Bacterial - metabolism
Microbiology
Models, Molecular
Molecular Docking Simulation
Nitric Oxide - metabolism
Proteins
Regulatory Sequences, Nucleic Acid
Ribonucleic acid
RNA
RNA Polymerase Sigma 54 - genetics
RNA Polymerase Sigma 54 - metabolism
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
title The structural basis for enhancer‐dependent assembly and activation of the AAA transcriptional activator NorR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20basis%20for%20enhancer%E2%80%90dependent%20assembly%20and%20activation%20of%20the%20AAA%20transcriptional%20activator%20NorR&rft.jtitle=Molecular%20microbiology&rft.au=Bush,%20Matt&rft.date=2015-01&rft.volume=95&rft.issue=1&rft.spage=17&rft.epage=30&rft.pages=17-30&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12844&rft_dat=%3Cproquest_cross%3E1639982251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644755228&rft_id=info:pmid/25354037&rfr_iscdi=true