Individual loss reserving using paid–incurred data

This paper develops a stochastic model for individual claims reserving using observed data on claim payments as well as incurred losses. We extend the approach of Pigeon et al. (2013), designed for payments only, towards the inclusion of incurred losses. We call the new technique the individual Paid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2014-09, Vol.58, p.121-131
Hauptverfasser: Pigeon, Mathieu, Antonio, Katrien, Denuit, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue
container_start_page 121
container_title Insurance, mathematics & economics
container_volume 58
creator Pigeon, Mathieu
Antonio, Katrien
Denuit, Michel
description This paper develops a stochastic model for individual claims reserving using observed data on claim payments as well as incurred losses. We extend the approach of Pigeon et al. (2013), designed for payments only, towards the inclusion of incurred losses. We call the new technique the individual Paid and Incurred Chain (iPIC) reserving method. Analytic expressions are derived for the expected ultimate losses, given observed development patterns. The usefulness of this new model is illustrated with a portfolio of general liability insurance policies. For the case study developed in this paper, detailed comparisons with existing approaches reveal that iPIC method performs well and produces more accurate predictions.
doi_str_mv 10.1016/j.insmatheco.2014.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639481378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668714000845</els_id><sourcerecordid>1639481378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-1dcb44899e1b7925dd485a1cc402a0bb863143e4efbea95eb674f8b2f0a5a9513</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI6-Q8GNm9bcJk2TpQ7-wYAbXYc0udUMnXZM2gF3voNv6JOYYQTBjZt7ufCdwz2HkAxoARTE5arwfVyb8RXtUJQUeEFFQaE8IDOQNcsrValDMktonQsh62NyEuOKUgpK1DPCH3rnt95Npsu6IcYsYMSw9f1LNsXd3Bjvvj4-fW-nENBlzozmlBy1pot49rPn5Pn25mlxny8f7x4WV8vccsXGHJxtOJdKITS1KivnuKwMWMtpaWjTSMGAM-TYNmhUhY2oeSubsqWmSjewObnY-27C8DZhHPXaR4tdZ3ocpqhBMMUlsFom9PwPuhqm0KfvNFSC1QllKlFyT9mQsgZs9Sb4tQnvGqje1alX-rdOvatTU6FTnUl6vZdiCrz1GHS0HnuLzge0o3aD_9_kG0FMg8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563716339</pqid></control><display><type>article</type><title>Individual loss reserving using paid–incurred data</title><source>Elsevier ScienceDirect Journals</source><creator>Pigeon, Mathieu ; Antonio, Katrien ; Denuit, Michel</creator><creatorcontrib>Pigeon, Mathieu ; Antonio, Katrien ; Denuit, Michel</creatorcontrib><description>This paper develops a stochastic model for individual claims reserving using observed data on claim payments as well as incurred losses. We extend the approach of Pigeon et al. (2013), designed for payments only, towards the inclusion of incurred losses. We call the new technique the individual Paid and Incurred Chain (iPIC) reserving method. Analytic expressions are derived for the expected ultimate losses, given observed development patterns. The usefulness of this new model is illustrated with a portfolio of general liability insurance policies. For the case study developed in this paper, detailed comparisons with existing approaches reveal that iPIC method performs well and produces more accurate predictions.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2014.06.012</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical philosophy ; Case studies ; Chain-Ladder ; Development strategies ; General insurance ; Insurance ; Insurance claims ; Insurance policies ; Insured losses ; Liability insurance ; Multivariate Skew Normal distribution ; Payments ; Prediction ; Stochastic loss reserving ; Stochastic models ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 2014-09, Vol.58, p.121-131</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-1dcb44899e1b7925dd485a1cc402a0bb863143e4efbea95eb674f8b2f0a5a9513</citedby><cites>FETCH-LOGICAL-c493t-1dcb44899e1b7925dd485a1cc402a0bb863143e4efbea95eb674f8b2f0a5a9513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668714000845$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pigeon, Mathieu</creatorcontrib><creatorcontrib>Antonio, Katrien</creatorcontrib><creatorcontrib>Denuit, Michel</creatorcontrib><title>Individual loss reserving using paid–incurred data</title><title>Insurance, mathematics &amp; economics</title><description>This paper develops a stochastic model for individual claims reserving using observed data on claim payments as well as incurred losses. We extend the approach of Pigeon et al. (2013), designed for payments only, towards the inclusion of incurred losses. We call the new technique the individual Paid and Incurred Chain (iPIC) reserving method. Analytic expressions are derived for the expected ultimate losses, given observed development patterns. The usefulness of this new model is illustrated with a portfolio of general liability insurance policies. For the case study developed in this paper, detailed comparisons with existing approaches reveal that iPIC method performs well and produces more accurate predictions.</description><subject>Analytical philosophy</subject><subject>Case studies</subject><subject>Chain-Ladder</subject><subject>Development strategies</subject><subject>General insurance</subject><subject>Insurance</subject><subject>Insurance claims</subject><subject>Insurance policies</subject><subject>Insured losses</subject><subject>Liability insurance</subject><subject>Multivariate Skew Normal distribution</subject><subject>Payments</subject><subject>Prediction</subject><subject>Stochastic loss reserving</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI6-Q8GNm9bcJk2TpQ7-wYAbXYc0udUMnXZM2gF3voNv6JOYYQTBjZt7ufCdwz2HkAxoARTE5arwfVyb8RXtUJQUeEFFQaE8IDOQNcsrValDMktonQsh62NyEuOKUgpK1DPCH3rnt95Npsu6IcYsYMSw9f1LNsXd3Bjvvj4-fW-nENBlzozmlBy1pot49rPn5Pn25mlxny8f7x4WV8vccsXGHJxtOJdKITS1KivnuKwMWMtpaWjTSMGAM-TYNmhUhY2oeSubsqWmSjewObnY-27C8DZhHPXaR4tdZ3ocpqhBMMUlsFom9PwPuhqm0KfvNFSC1QllKlFyT9mQsgZs9Sb4tQnvGqje1alX-rdOvatTU6FTnUl6vZdiCrz1GHS0HnuLzge0o3aD_9_kG0FMg8I</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Pigeon, Mathieu</creator><creator>Antonio, Katrien</creator><creator>Denuit, Michel</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20140901</creationdate><title>Individual loss reserving using paid–incurred data</title><author>Pigeon, Mathieu ; Antonio, Katrien ; Denuit, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-1dcb44899e1b7925dd485a1cc402a0bb863143e4efbea95eb674f8b2f0a5a9513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical philosophy</topic><topic>Case studies</topic><topic>Chain-Ladder</topic><topic>Development strategies</topic><topic>General insurance</topic><topic>Insurance</topic><topic>Insurance claims</topic><topic>Insurance policies</topic><topic>Insured losses</topic><topic>Liability insurance</topic><topic>Multivariate Skew Normal distribution</topic><topic>Payments</topic><topic>Prediction</topic><topic>Stochastic loss reserving</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pigeon, Mathieu</creatorcontrib><creatorcontrib>Antonio, Katrien</creatorcontrib><creatorcontrib>Denuit, Michel</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pigeon, Mathieu</au><au>Antonio, Katrien</au><au>Denuit, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual loss reserving using paid–incurred data</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>58</volume><spage>121</spage><epage>131</epage><pages>121-131</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>This paper develops a stochastic model for individual claims reserving using observed data on claim payments as well as incurred losses. We extend the approach of Pigeon et al. (2013), designed for payments only, towards the inclusion of incurred losses. We call the new technique the individual Paid and Incurred Chain (iPIC) reserving method. Analytic expressions are derived for the expected ultimate losses, given observed development patterns. The usefulness of this new model is illustrated with a portfolio of general liability insurance policies. For the case study developed in this paper, detailed comparisons with existing approaches reveal that iPIC method performs well and produces more accurate predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2014.06.012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2014-09, Vol.58, p.121-131
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_1639481378
source Elsevier ScienceDirect Journals
subjects Analytical philosophy
Case studies
Chain-Ladder
Development strategies
General insurance
Insurance
Insurance claims
Insurance policies
Insured losses
Liability insurance
Multivariate Skew Normal distribution
Payments
Prediction
Stochastic loss reserving
Stochastic models
Studies
title Individual loss reserving using paid–incurred data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20loss%20reserving%20using%20paid%E2%80%93incurred%20data&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Pigeon,%20Mathieu&rft.date=2014-09-01&rft.volume=58&rft.spage=121&rft.epage=131&rft.pages=121-131&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2014.06.012&rft_dat=%3Cproquest_cross%3E1639481378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563716339&rft_id=info:pmid/&rft_els_id=S0167668714000845&rfr_iscdi=true