Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims

This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2014-09, Vol.58, p.185-192
Hauptverfasser: Yang, Haizhong, Li, Jinzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue
container_start_page 185
container_title Insurance, mathematics & economics
container_volume 58
creator Yang, Haizhong
Li, Jinzhu
description This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.
doi_str_mv 10.1016/j.insmatheco.2014.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639480764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668714000936</els_id><sourcerecordid>3437436021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpIdM07yDophu7ku2R5GUa2rQQyKZdC_1ckzu1JVeSm85T5JWjYQqFbIoWV3C_c7iHQwjlrOWMi4-HFkNeTHkAF9uO8aFlsmVMviI7rmTf7Mf9-JrsKiobIZS8IG9zPjDG-Cjkjjxd5-OylljQ0QkDFmgKLkDThoGuKVpjccZypFNM1FCLvm5DxhjMTBMEeDxNzD_pEj3M9BHLA3Ux5GJCoRgKJMjlpHZATfDUwwrBQ13mzcKfNYb6x2riZoNLfkfeTGbOcPV3XpIfXz5_v_na3N3ffru5vmvcMPSlGQ1YbmUnrPUSxl5Zwb2fumEaOt51XCnTW8mMYmrgrB8lG0dppXPgfS_ruyQfzr4146-tnqgXzA7m2QSIW9Zc9OOgmBRDRd-_QA9xSzV_pfail1wMqquUOlMuxZwTTHpNuJh01JzpU1P6oP81pU9NaSZ1bapKP52lUAP_Rkg6O4RQb8UErmgf8f8mz2A8pTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563716482</pqid></control><display><type>article</type><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Haizhong ; Li, Jinzhu</creator><creatorcontrib>Yang, Haizhong ; Li, Jinzhu</creatorcontrib><description>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2014.07.007</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Asymptotics ; Bidimensional renewal risk model ; Distribution ; Farlie–Gumbel–Morgenstern distribution ; Financial risks ; Probability ; Probability distribution ; Random sampling ; Risk assessment ; Ruin probability ; Studies ; Subexponentiality</subject><ispartof>Insurance, mathematics &amp; economics, 2014-09, Vol.58, p.185-192</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</citedby><cites>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2014.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Haizhong</creatorcontrib><creatorcontrib>Li, Jinzhu</creatorcontrib><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><title>Insurance, mathematics &amp; economics</title><description>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</description><subject>Asymptotic methods</subject><subject>Asymptotics</subject><subject>Bidimensional renewal risk model</subject><subject>Distribution</subject><subject>Farlie–Gumbel–Morgenstern distribution</subject><subject>Financial risks</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random sampling</subject><subject>Risk assessment</subject><subject>Ruin probability</subject><subject>Studies</subject><subject>Subexponentiality</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpIdM07yDophu7ku2R5GUa2rQQyKZdC_1ckzu1JVeSm85T5JWjYQqFbIoWV3C_c7iHQwjlrOWMi4-HFkNeTHkAF9uO8aFlsmVMviI7rmTf7Mf9-JrsKiobIZS8IG9zPjDG-Cjkjjxd5-OylljQ0QkDFmgKLkDThoGuKVpjccZypFNM1FCLvm5DxhjMTBMEeDxNzD_pEj3M9BHLA3Ux5GJCoRgKJMjlpHZATfDUwwrBQ13mzcKfNYb6x2riZoNLfkfeTGbOcPV3XpIfXz5_v_na3N3ffru5vmvcMPSlGQ1YbmUnrPUSxl5Zwb2fumEaOt51XCnTW8mMYmrgrB8lG0dppXPgfS_ruyQfzr4146-tnqgXzA7m2QSIW9Zc9OOgmBRDRd-_QA9xSzV_pfail1wMqquUOlMuxZwTTHpNuJh01JzpU1P6oP81pU9NaSZ1bapKP52lUAP_Rkg6O4RQb8UErmgf8f8mz2A8pTs</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Yang, Haizhong</creator><creator>Li, Jinzhu</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20140901</creationdate><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><author>Yang, Haizhong ; Li, Jinzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic methods</topic><topic>Asymptotics</topic><topic>Bidimensional renewal risk model</topic><topic>Distribution</topic><topic>Farlie–Gumbel–Morgenstern distribution</topic><topic>Financial risks</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random sampling</topic><topic>Risk assessment</topic><topic>Ruin probability</topic><topic>Studies</topic><topic>Subexponentiality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haizhong</creatorcontrib><creatorcontrib>Li, Jinzhu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haizhong</au><au>Li, Jinzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>58</volume><spage>185</spage><epage>192</epage><pages>185-192</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2014.07.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2014-09, Vol.58, p.185-192
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_1639480764
source Elsevier ScienceDirect Journals Complete
subjects Asymptotic methods
Asymptotics
Bidimensional renewal risk model
Distribution
Farlie–Gumbel–Morgenstern distribution
Financial risks
Probability
Probability distribution
Random sampling
Risk assessment
Ruin probability
Studies
Subexponentiality
title Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20finite-time%20ruin%20probability%20for%20a%20bidimensional%20renewal%20risk%20model%20with%20constant%20interest%20force%20and%20dependent%20subexponential%20claims&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Yang,%20Haizhong&rft.date=2014-09-01&rft.volume=58&rft.spage=185&rft.epage=192&rft.pages=185-192&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2014.07.007&rft_dat=%3Cproquest_cross%3E3437436021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563716482&rft_id=info:pmid/&rft_els_id=S0167668714000936&rfr_iscdi=true