Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims
This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2014-09, Vol.58, p.185-192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | |
container_start_page | 185 |
container_title | Insurance, mathematics & economics |
container_volume | 58 |
creator | Yang, Haizhong Li, Jinzhu |
description | This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula. |
doi_str_mv | 10.1016/j.insmatheco.2014.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1639480764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668714000936</els_id><sourcerecordid>3437436021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpIdM07yDophu7ku2R5GUa2rQQyKZdC_1ckzu1JVeSm85T5JWjYQqFbIoWV3C_c7iHQwjlrOWMi4-HFkNeTHkAF9uO8aFlsmVMviI7rmTf7Mf9-JrsKiobIZS8IG9zPjDG-Cjkjjxd5-OylljQ0QkDFmgKLkDThoGuKVpjccZypFNM1FCLvm5DxhjMTBMEeDxNzD_pEj3M9BHLA3Ux5GJCoRgKJMjlpHZATfDUwwrBQ13mzcKfNYb6x2riZoNLfkfeTGbOcPV3XpIfXz5_v_na3N3ffru5vmvcMPSlGQ1YbmUnrPUSxl5Zwb2fumEaOt51XCnTW8mMYmrgrB8lG0dppXPgfS_ruyQfzr4146-tnqgXzA7m2QSIW9Zc9OOgmBRDRd-_QA9xSzV_pfail1wMqquUOlMuxZwTTHpNuJh01JzpU1P6oP81pU9NaSZ1bapKP52lUAP_Rkg6O4RQb8UErmgf8f8mz2A8pTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563716482</pqid></control><display><type>article</type><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Haizhong ; Li, Jinzhu</creator><creatorcontrib>Yang, Haizhong ; Li, Jinzhu</creatorcontrib><description>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2014.07.007</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Asymptotics ; Bidimensional renewal risk model ; Distribution ; Farlie–Gumbel–Morgenstern distribution ; Financial risks ; Probability ; Probability distribution ; Random sampling ; Risk assessment ; Ruin probability ; Studies ; Subexponentiality</subject><ispartof>Insurance, mathematics & economics, 2014-09, Vol.58, p.185-192</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</citedby><cites>FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2014.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Haizhong</creatorcontrib><creatorcontrib>Li, Jinzhu</creatorcontrib><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><title>Insurance, mathematics & economics</title><description>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</description><subject>Asymptotic methods</subject><subject>Asymptotics</subject><subject>Bidimensional renewal risk model</subject><subject>Distribution</subject><subject>Farlie–Gumbel–Morgenstern distribution</subject><subject>Financial risks</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random sampling</subject><subject>Risk assessment</subject><subject>Ruin probability</subject><subject>Studies</subject><subject>Subexponentiality</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpIdM07yDophu7ku2R5GUa2rQQyKZdC_1ckzu1JVeSm85T5JWjYQqFbIoWV3C_c7iHQwjlrOWMi4-HFkNeTHkAF9uO8aFlsmVMviI7rmTf7Mf9-JrsKiobIZS8IG9zPjDG-Cjkjjxd5-OylljQ0QkDFmgKLkDThoGuKVpjccZypFNM1FCLvm5DxhjMTBMEeDxNzD_pEj3M9BHLA3Ux5GJCoRgKJMjlpHZATfDUwwrBQ13mzcKfNYb6x2riZoNLfkfeTGbOcPV3XpIfXz5_v_na3N3ffru5vmvcMPSlGQ1YbmUnrPUSxl5Zwb2fumEaOt51XCnTW8mMYmrgrB8lG0dppXPgfS_ruyQfzr4146-tnqgXzA7m2QSIW9Zc9OOgmBRDRd-_QA9xSzV_pfail1wMqquUOlMuxZwTTHpNuJh01JzpU1P6oP81pU9NaSZ1bapKP52lUAP_Rkg6O4RQb8UErmgf8f8mz2A8pTs</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Yang, Haizhong</creator><creator>Li, Jinzhu</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20140901</creationdate><title>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</title><author>Yang, Haizhong ; Li, Jinzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9aeb1b726bbd7e938b61ddf24f42122188a3b70a8084103970997b7ccedd37373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic methods</topic><topic>Asymptotics</topic><topic>Bidimensional renewal risk model</topic><topic>Distribution</topic><topic>Farlie–Gumbel–Morgenstern distribution</topic><topic>Financial risks</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random sampling</topic><topic>Risk assessment</topic><topic>Ruin probability</topic><topic>Studies</topic><topic>Subexponentiality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haizhong</creatorcontrib><creatorcontrib>Li, Jinzhu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haizhong</au><au>Li, Jinzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>58</volume><spage>185</spage><epage>192</epage><pages>185-192</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>This paper considers a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Under the assumption that the claim size vectors form a sequence of independent and identically distributed random vectors following a common bivariate Farlie–Gumbel–Morgenstern distribution, we derive for the finite-time ruin probability an explicit asymptotic formula.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2014.07.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2014-09, Vol.58, p.185-192 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_1639480764 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymptotic methods Asymptotics Bidimensional renewal risk model Distribution Farlie–Gumbel–Morgenstern distribution Financial risks Probability Probability distribution Random sampling Risk assessment Ruin probability Studies Subexponentiality |
title | Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20finite-time%20ruin%20probability%20for%20a%20bidimensional%20renewal%20risk%20model%20with%20constant%20interest%20force%20and%20dependent%20subexponential%20claims&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Yang,%20Haizhong&rft.date=2014-09-01&rft.volume=58&rft.spage=185&rft.epage=192&rft.pages=185-192&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2014.07.007&rft_dat=%3Cproquest_cross%3E3437436021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563716482&rft_id=info:pmid/&rft_els_id=S0167668714000936&rfr_iscdi=true |