An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers

Three cultivars of lisianthus (Eustoma grandiflorum (Grise.)) were transformed with a homologous antisense CHS cDNA via Agrobacterium-mediated transformation. Over 50% of the transgenics derived from the purple flowering lines exhibited an altered flower colour pattern ranging from small streaks of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular breeding 1998-01, Vol.4 (1), p.59-66
Hauptverfasser: Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre), Bradley, J.M, Schwinn, K.E, Markham, K.R, Bloor, S, Manson, D.G, Davies, K.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 59
container_title Molecular breeding
container_volume 4
creator Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre)
Bradley, J.M
Schwinn, K.E
Markham, K.R
Bloor, S
Manson, D.G
Davies, K.M
description Three cultivars of lisianthus (Eustoma grandiflorum (Grise.)) were transformed with a homologous antisense CHS cDNA via Agrobacterium-mediated transformation. Over 50% of the transgenics derived from the purple flowering lines exhibited an altered flower colour pattern ranging from small streaks of white on the wild-type purple background through to completely white flowers. A significant portion of the transgenic lines showed unstable phenotypes. Northern and biochemical analysis showed that the altered flower patterns were associated with a loss of CHS gene transcript and a corresponding loss of CHS enzyme activity. In the white flowering line the level of total flavonoids was reduced to ca. 2.0% of the wild-type level. Some of the transgenic plants also exhibited alterations in flower form such as the formation of frilled petal tips and reduced flower opening. Several of the new patterned lines are being evaluated for stability and possible commercial release.
doi_str_mv 10.1023/A:1009621903402
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_16372234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16372234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9e88be7acb2f9922289a6b457ee1e7d140ef404c32876b3f0b2b4619adc2efc83</originalsourceid><addsrcrecordid>eNpdkM1LxDAUxIsouK6ePQkBQfRQzVebxFtZ1w9Y1oueS5q-7nbJJmuTKv73RtaTp3kMP4Y3k2XnBN8STNlddU8wViUlCjOO6UE2IYWguRJSHqabSZwzwdlxdhLCBmMsVFlOMl85pF3sA7gAyKy1Nd4BCt8urvWv87CskAXdBhQ9cv4TLDLe-nFAOx0jDC6g3iHbhz7FrMeArudjiH6r0WrQru0764dxe4OSfsEQTrOjTtsAZ386zd4f52-z53zx-vQyqxa5oRLHXIGUDQhtGtopRSmVSpcNLwQAAdESjqHjmBtGpSgb1uGGNrwkSreGQmckm2ZX-9zd4D9GCLHe9sGAtdqBH0NNSiYoZTyBl__ATSrn0m81pYXiqiiFStTFnuq0r_Vq6EO9XBClJMZpVMV-AKiecwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259495679</pqid></control><display><type>article</type><title>An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers</title><source>SpringerNature Complete Journals</source><creator>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre) ; Bradley, J.M ; Schwinn, K.E ; Markham, K.R ; Bloor, S ; Manson, D.G ; Davies, K.M</creator><creatorcontrib>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre) ; Bradley, J.M ; Schwinn, K.E ; Markham, K.R ; Bloor, S ; Manson, D.G ; Davies, K.M</creatorcontrib><description>Three cultivars of lisianthus (Eustoma grandiflorum (Grise.)) were transformed with a homologous antisense CHS cDNA via Agrobacterium-mediated transformation. Over 50% of the transgenics derived from the purple flowering lines exhibited an altered flower colour pattern ranging from small streaks of white on the wild-type purple background through to completely white flowers. A significant portion of the transgenic lines showed unstable phenotypes. Northern and biochemical analysis showed that the altered flower patterns were associated with a loss of CHS gene transcript and a corresponding loss of CHS enzyme activity. In the white flowering line the level of total flavonoids was reduced to ca. 2.0% of the wild-type level. Some of the transgenic plants also exhibited alterations in flower form such as the formation of frilled petal tips and reduced flower opening. Several of the new patterned lines are being evaluated for stability and possible commercial release.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1023/A:1009621903402</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>ADN ; AGROBACTERIUM ; Antisense DNA ; Biochemical analysis ; CALCONA ; CHALCONE ; Chalcone synthase ; CHALCONES ; CHS gene ; COLOR ; COLOUR ; COULEUR ; Cultivars ; DNA ; Enzymatic activity ; Enzyme activity ; EUSTOMA GRANDIFLORUM ; Flavonoids ; FLEUR ; FLORES ; Flowering ; FLOWERS ; GENE TRANSFER ; GENETIC TRANSFORMATION ; Homology ; Molecular biology ; Phenotypes ; Plant biology ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants (botany) ; Stability analysis ; Transcription ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; TRANSGENIC PLANTS</subject><ispartof>Molecular breeding, 1998-01, Vol.4 (1), p.59-66</ispartof><rights>Molecular Breeding is a copyright of Springer, (1998). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9e88be7acb2f9922289a6b457ee1e7d140ef404c32876b3f0b2b4619adc2efc83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre)</creatorcontrib><creatorcontrib>Bradley, J.M</creatorcontrib><creatorcontrib>Schwinn, K.E</creatorcontrib><creatorcontrib>Markham, K.R</creatorcontrib><creatorcontrib>Bloor, S</creatorcontrib><creatorcontrib>Manson, D.G</creatorcontrib><creatorcontrib>Davies, K.M</creatorcontrib><title>An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers</title><title>Molecular breeding</title><description>Three cultivars of lisianthus (Eustoma grandiflorum (Grise.)) were transformed with a homologous antisense CHS cDNA via Agrobacterium-mediated transformation. Over 50% of the transgenics derived from the purple flowering lines exhibited an altered flower colour pattern ranging from small streaks of white on the wild-type purple background through to completely white flowers. A significant portion of the transgenic lines showed unstable phenotypes. Northern and biochemical analysis showed that the altered flower patterns were associated with a loss of CHS gene transcript and a corresponding loss of CHS enzyme activity. In the white flowering line the level of total flavonoids was reduced to ca. 2.0% of the wild-type level. Some of the transgenic plants also exhibited alterations in flower form such as the formation of frilled petal tips and reduced flower opening. Several of the new patterned lines are being evaluated for stability and possible commercial release.</description><subject>ADN</subject><subject>AGROBACTERIUM</subject><subject>Antisense DNA</subject><subject>Biochemical analysis</subject><subject>CALCONA</subject><subject>CHALCONE</subject><subject>Chalcone synthase</subject><subject>CHALCONES</subject><subject>CHS gene</subject><subject>COLOR</subject><subject>COLOUR</subject><subject>COULEUR</subject><subject>Cultivars</subject><subject>DNA</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>EUSTOMA GRANDIFLORUM</subject><subject>Flavonoids</subject><subject>FLEUR</subject><subject>FLORES</subject><subject>Flowering</subject><subject>FLOWERS</subject><subject>GENE TRANSFER</subject><subject>GENETIC TRANSFORMATION</subject><subject>Homology</subject><subject>Molecular biology</subject><subject>Phenotypes</subject><subject>Plant biology</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants (botany)</subject><subject>Stability analysis</subject><subject>Transcription</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>TRANSGENIC PLANTS</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkM1LxDAUxIsouK6ePQkBQfRQzVebxFtZ1w9Y1oueS5q-7nbJJmuTKv73RtaTp3kMP4Y3k2XnBN8STNlddU8wViUlCjOO6UE2IYWguRJSHqabSZwzwdlxdhLCBmMsVFlOMl85pF3sA7gAyKy1Nd4BCt8urvWv87CskAXdBhQ9cv4TLDLe-nFAOx0jDC6g3iHbhz7FrMeArudjiH6r0WrQru0764dxe4OSfsEQTrOjTtsAZ386zd4f52-z53zx-vQyqxa5oRLHXIGUDQhtGtopRSmVSpcNLwQAAdESjqHjmBtGpSgb1uGGNrwkSreGQmckm2ZX-9zd4D9GCLHe9sGAtdqBH0NNSiYoZTyBl__ATSrn0m81pYXiqiiFStTFnuq0r_Vq6EO9XBClJMZpVMV-AKiecwU</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre)</creator><creator>Bradley, J.M</creator><creator>Schwinn, K.E</creator><creator>Markham, K.R</creator><creator>Bloor, S</creator><creator>Manson, D.G</creator><creator>Davies, K.M</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19980101</creationdate><title>An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers</title><author>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre) ; Bradley, J.M ; Schwinn, K.E ; Markham, K.R ; Bloor, S ; Manson, D.G ; Davies, K.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9e88be7acb2f9922289a6b457ee1e7d140ef404c32876b3f0b2b4619adc2efc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ADN</topic><topic>AGROBACTERIUM</topic><topic>Antisense DNA</topic><topic>Biochemical analysis</topic><topic>CALCONA</topic><topic>CHALCONE</topic><topic>Chalcone synthase</topic><topic>CHALCONES</topic><topic>CHS gene</topic><topic>COLOR</topic><topic>COLOUR</topic><topic>COULEUR</topic><topic>Cultivars</topic><topic>DNA</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>EUSTOMA GRANDIFLORUM</topic><topic>Flavonoids</topic><topic>FLEUR</topic><topic>FLORES</topic><topic>Flowering</topic><topic>FLOWERS</topic><topic>GENE TRANSFER</topic><topic>GENETIC TRANSFORMATION</topic><topic>Homology</topic><topic>Molecular biology</topic><topic>Phenotypes</topic><topic>Plant biology</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants (botany)</topic><topic>Stability analysis</topic><topic>Transcription</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>TRANSGENIC PLANTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre)</creatorcontrib><creatorcontrib>Bradley, J.M</creatorcontrib><creatorcontrib>Schwinn, K.E</creatorcontrib><creatorcontrib>Markham, K.R</creatorcontrib><creatorcontrib>Bloor, S</creatorcontrib><creatorcontrib>Manson, D.G</creatorcontrib><creatorcontrib>Davies, K.M</creatorcontrib><collection>AGRIS</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deroles, S.C. (New Zealand Inst. for Crop and Food Research Ltd., Levin (New Zealand). Levin Research Centre)</au><au>Bradley, J.M</au><au>Schwinn, K.E</au><au>Markham, K.R</au><au>Bloor, S</au><au>Manson, D.G</au><au>Davies, K.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers</atitle><jtitle>Molecular breeding</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>4</volume><issue>1</issue><spage>59</spage><epage>66</epage><pages>59-66</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Three cultivars of lisianthus (Eustoma grandiflorum (Grise.)) were transformed with a homologous antisense CHS cDNA via Agrobacterium-mediated transformation. Over 50% of the transgenics derived from the purple flowering lines exhibited an altered flower colour pattern ranging from small streaks of white on the wild-type purple background through to completely white flowers. A significant portion of the transgenic lines showed unstable phenotypes. Northern and biochemical analysis showed that the altered flower patterns were associated with a loss of CHS gene transcript and a corresponding loss of CHS enzyme activity. In the white flowering line the level of total flavonoids was reduced to ca. 2.0% of the wild-type level. Some of the transgenic plants also exhibited alterations in flower form such as the formation of frilled petal tips and reduced flower opening. Several of the new patterned lines are being evaluated for stability and possible commercial release.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1009621903402</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-3743
ispartof Molecular breeding, 1998-01, Vol.4 (1), p.59-66
issn 1380-3743
1572-9788
language eng
recordid cdi_proquest_miscellaneous_16372234
source SpringerNature Complete Journals
subjects ADN
AGROBACTERIUM
Antisense DNA
Biochemical analysis
CALCONA
CHALCONE
Chalcone synthase
CHALCONES
CHS gene
COLOR
COLOUR
COULEUR
Cultivars
DNA
Enzymatic activity
Enzyme activity
EUSTOMA GRANDIFLORUM
Flavonoids
FLEUR
FLORES
Flowering
FLOWERS
GENE TRANSFER
GENETIC TRANSFORMATION
Homology
Molecular biology
Phenotypes
Plant biology
PLANTAS TRANSGENICAS
PLANTE TRANSGENIQUE
Plants (botany)
Stability analysis
Transcription
TRANSFERENCIA DE GENES
TRANSFERT DE GENE
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
TRANSGENIC PLANTS
title An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20antisense%20chalcone%20synthase%20cDNA%20leads%20to%20novel%20colour%20patterns%20in%20lisianthus%20(Eustoma%20grandiflorum)%20flowers&rft.jtitle=Molecular%20breeding&rft.au=Deroles,%20S.C.%20(New%20Zealand%20Inst.%20for%20Crop%20and%20Food%20Research%20Ltd.,%20Levin%20(New%20Zealand).%20Levin%20Research%20Centre)&rft.date=1998-01-01&rft.volume=4&rft.issue=1&rft.spage=59&rft.epage=66&rft.pages=59-66&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1023/A:1009621903402&rft_dat=%3Cproquest_fao_a%3E16372234%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259495679&rft_id=info:pmid/&rfr_iscdi=true