Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis

If site-directed mutagenesis could be used to facilitate protein semisynthesis, then structural engineering goals should be achieved that are unattainable by either technique alone. We tested this possibility by mutating Ser65 of yeast cytochrome c to methionine, creating a new site for CNBr cleavag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1991-11, Vol.266 (32), p.21355-21357
Hauptverfasser: WALLACE, C. J. A, GUILLEMETTE, J. G, HIBIYA, Y, SMITH, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21357
container_issue 32
container_start_page 21355
container_title The Journal of biological chemistry
container_volume 266
creator WALLACE, C. J. A
GUILLEMETTE, J. G
HIBIYA, Y
SMITH, M
description If site-directed mutagenesis could be used to facilitate protein semisynthesis, then structural engineering goals should be achieved that are unattainable by either technique alone. We tested this possibility by mutating Ser65 of yeast cytochrome c to methionine, creating a new site for CNBr cleavage. Fragments obtained by cleaving there were found to refold cooperatively, bringing together the breakpoint termini and leading to efficient autocatalytic peptide bond synthesis. Structurally modified fragments may be substituted for natural ones. Generally, naturally occurring sites are unsuitable for autocatalytic religation, for reasons briefly discussed, and thus the power of this new approach lies in the freedom to choose sites, including enzymatic ones, that are appropriate to the semisynthetic goals.
doi_str_mv 10.1016/S0021-9258(18)54643-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16364805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16364805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-6aa682d8cf5f7d27dab8cd6dfe553662ae46325a4d4239a0d9170341b79a5eaa3</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMo43h5BKELEV1Uc2-7FPEGggsdcBdOk9NppE3HpoPM29s6g2aTcP7vJCcfIWeMXjPK9M0bpZylBVf5JcuvlNRSpGKPzBnNx4NiH_tk_occkqMYP-m4ZMFmZMa0ygpN52RxH2oI1odlsuq7AX1IMCx9QOynmoUVlL7xg8eYlJvEdm3pw5S06wGWGDD6mEBwScTWx00Y6qlyQg4qaCKe7vZjsni4f797Sl9eH5_vbl9SKyUdUg2gc-5yW6kqczxzUObWaVehUkJrDii14Aqkk1wUQF3BMiokK7MCFAKIY3KxvXec_WuNcTDjEBabBgJ262iYFlrmVI2g2oK272LssTKr3rfQbwyjZtJpfnWayZVhufnVacTYd7Z7YF226P67tv7G_HyXQ7TQVP3kMv5himqpMvGP1X5Zf_seTek7W2NruNZGcMOZGL_8AzmEipc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16364805</pqid></control><display><type>article</type><title>Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>WALLACE, C. J. A ; GUILLEMETTE, J. G ; HIBIYA, Y ; SMITH, M</creator><creatorcontrib>WALLACE, C. J. A ; GUILLEMETTE, J. G ; HIBIYA, Y ; SMITH, M</creatorcontrib><description>If site-directed mutagenesis could be used to facilitate protein semisynthesis, then structural engineering goals should be achieved that are unattainable by either technique alone. We tested this possibility by mutating Ser65 of yeast cytochrome c to methionine, creating a new site for CNBr cleavage. Fragments obtained by cleaving there were found to refold cooperatively, bringing together the breakpoint termini and leading to efficient autocatalytic peptide bond synthesis. Structurally modified fragments may be substituted for natural ones. Generally, naturally occurring sites are unsuitable for autocatalytic religation, for reasons briefly discussed, and thus the power of this new approach lies in the freedom to choose sites, including enzymatic ones, that are appropriate to the semisynthetic goals.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)54643-3</identifier><identifier>PMID: 1657960</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Animals ; Base Sequence ; Biological and medical sciences ; Cyanogen Bromide ; Cytochrome c Group - chemical synthesis ; Cytochrome c Group - genetics ; Cytochrome c Group - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; Horses ; improvements ; Methionine ; methodology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Oxidoreductases - metabolism ; Peptide Fragments - isolation &amp; purification ; Protein Conformation ; Protein Engineering - methods ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Serine ; site-directed mutagenesis</subject><ispartof>The Journal of biological chemistry, 1991-11, Vol.266 (32), p.21355-21357</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-6aa682d8cf5f7d27dab8cd6dfe553662ae46325a4d4239a0d9170341b79a5eaa3</citedby><cites>FETCH-LOGICAL-c440t-6aa682d8cf5f7d27dab8cd6dfe553662ae46325a4d4239a0d9170341b79a5eaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5064573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1657960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WALLACE, C. J. A</creatorcontrib><creatorcontrib>GUILLEMETTE, J. G</creatorcontrib><creatorcontrib>HIBIYA, Y</creatorcontrib><creatorcontrib>SMITH, M</creatorcontrib><title>Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>If site-directed mutagenesis could be used to facilitate protein semisynthesis, then structural engineering goals should be achieved that are unattainable by either technique alone. We tested this possibility by mutating Ser65 of yeast cytochrome c to methionine, creating a new site for CNBr cleavage. Fragments obtained by cleaving there were found to refold cooperatively, bringing together the breakpoint termini and leading to efficient autocatalytic peptide bond synthesis. Structurally modified fragments may be substituted for natural ones. Generally, naturally occurring sites are unsuitable for autocatalytic religation, for reasons briefly discussed, and thus the power of this new approach lies in the freedom to choose sites, including enzymatic ones, that are appropriate to the semisynthetic goals.</description><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cyanogen Bromide</subject><subject>Cytochrome c Group - chemical synthesis</subject><subject>Cytochrome c Group - genetics</subject><subject>Cytochrome c Group - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>Horses</subject><subject>improvements</subject><subject>Methionine</subject><subject>methodology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligodeoxyribonucleotides</subject><subject>Oxidoreductases - metabolism</subject><subject>Peptide Fragments - isolation &amp; purification</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Serine</subject><subject>site-directed mutagenesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtKxDAUhoMo43h5BKELEV1Uc2-7FPEGggsdcBdOk9NppE3HpoPM29s6g2aTcP7vJCcfIWeMXjPK9M0bpZylBVf5JcuvlNRSpGKPzBnNx4NiH_tk_occkqMYP-m4ZMFmZMa0ygpN52RxH2oI1odlsuq7AX1IMCx9QOynmoUVlL7xg8eYlJvEdm3pw5S06wGWGDD6mEBwScTWx00Y6qlyQg4qaCKe7vZjsni4f797Sl9eH5_vbl9SKyUdUg2gc-5yW6kqczxzUObWaVehUkJrDii14Aqkk1wUQF3BMiokK7MCFAKIY3KxvXec_WuNcTDjEBabBgJ262iYFlrmVI2g2oK272LssTKr3rfQbwyjZtJpfnWayZVhufnVacTYd7Z7YF226P67tv7G_HyXQ7TQVP3kMv5himqpMvGP1X5Zf_seTek7W2NruNZGcMOZGL_8AzmEipc</recordid><startdate>19911115</startdate><enddate>19911115</enddate><creator>WALLACE, C. J. A</creator><creator>GUILLEMETTE, J. G</creator><creator>HIBIYA, Y</creator><creator>SMITH, M</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope></search><sort><creationdate>19911115</creationdate><title>Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis</title><author>WALLACE, C. J. A ; GUILLEMETTE, J. G ; HIBIYA, Y ; SMITH, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-6aa682d8cf5f7d27dab8cd6dfe553662ae46325a4d4239a0d9170341b79a5eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cyanogen Bromide</topic><topic>Cytochrome c Group - chemical synthesis</topic><topic>Cytochrome c Group - genetics</topic><topic>Cytochrome c Group - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>Horses</topic><topic>improvements</topic><topic>Methionine</topic><topic>methodology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligodeoxyribonucleotides</topic><topic>Oxidoreductases - metabolism</topic><topic>Peptide Fragments - isolation &amp; purification</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Serine</topic><topic>site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WALLACE, C. J. A</creatorcontrib><creatorcontrib>GUILLEMETTE, J. G</creatorcontrib><creatorcontrib>HIBIYA, Y</creatorcontrib><creatorcontrib>SMITH, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WALLACE, C. J. A</au><au>GUILLEMETTE, J. G</au><au>HIBIYA, Y</au><au>SMITH, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1991-11-15</date><risdate>1991</risdate><volume>266</volume><issue>32</issue><spage>21355</spage><epage>21357</epage><pages>21355-21357</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>If site-directed mutagenesis could be used to facilitate protein semisynthesis, then structural engineering goals should be achieved that are unattainable by either technique alone. We tested this possibility by mutating Ser65 of yeast cytochrome c to methionine, creating a new site for CNBr cleavage. Fragments obtained by cleaving there were found to refold cooperatively, bringing together the breakpoint termini and leading to efficient autocatalytic peptide bond synthesis. Structurally modified fragments may be substituted for natural ones. Generally, naturally occurring sites are unsuitable for autocatalytic religation, for reasons briefly discussed, and thus the power of this new approach lies in the freedom to choose sites, including enzymatic ones, that are appropriate to the semisynthetic goals.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>1657960</pmid><doi>10.1016/S0021-9258(18)54643-3</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1991-11, Vol.266 (32), p.21355-21357
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_16364805
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Analytical, structural and metabolic biochemistry
Animals
Base Sequence
Biological and medical sciences
Cyanogen Bromide
Cytochrome c Group - chemical synthesis
Cytochrome c Group - genetics
Cytochrome c Group - metabolism
Fundamental and applied biological sciences. Psychology
General aspects, investigation methods
Horses
improvements
Methionine
methodology
Molecular Sequence Data
Mutagenesis, Site-Directed
Oligodeoxyribonucleotides
Oxidoreductases - metabolism
Peptide Fragments - isolation & purification
Protein Conformation
Protein Engineering - methods
Proteins
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Serine
site-directed mutagenesis
title Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20protein%20engineering%20capabilities%20by%20combining%20mutagenesis%20and%20semisynthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=WALLACE,%20C.%20J.%20A&rft.date=1991-11-15&rft.volume=266&rft.issue=32&rft.spage=21355&rft.epage=21357&rft.pages=21355-21357&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)54643-3&rft_dat=%3Cproquest_cross%3E16364805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16364805&rft_id=info:pmid/1657960&rfr_iscdi=true