Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays
The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasin...
Gespeichert in:
Veröffentlicht in: | Radiation and environmental biophysics 2014-11, Vol.53 (4), p.713-718 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | 4 |
container_start_page | 713 |
container_title | Radiation and environmental biophysics |
container_volume | 53 |
creator | Cortés-Gutiérrez, Elva I. Dávila-Rodríguez, Martha I. Cerda-Flores, Ricardo M. Fernández, José Luis López-Fernández, Carmen Gosálvez, Jaime |
description | The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high (
r
= 0.934,
b
0
= 10.408, and
b
1
= 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo. |
doi_str_mv | 10.1007/s00411-014-0555-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635035616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3467313741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</originalsourceid><addsrcrecordid>eNqFkc1OGzEQxy0EgvDxAFyQJS69GGb8mT1SUgoSgkOLxAlrszubLE3Wwd4cuPUd-oY8SR0FEKpUcRqN5je_sfVn7BDhBAHcaQLQiAJQCzDGCL3BBqiVFBKKYpMNQAEKq_T9DttN6REAnbXFNtuRujAudwP2cJeIh4b3U-Kjr6OX338urn5c8p6qadc-LYk3IfKact-33YSPbs74OFL5q5wQbzseKS1ClxV94NN2MuV1SJRWwnsRy-e0z7aacpbo4LXusbuLbz_PL8X17fer87NrUWlnemFqAgQcjhWMi0JbQnRYSmM0YCVtiaqRThEVSJaMbVBWlobgLNZ2SHWt9tiXtXcRQ3516v28TRXNZmVHYZk8WmVAGZvr5ygap7VTJqPH_6CPYRm7_JEVpS0qiUWmcE1VMaQUqfGL2M7L-OwR_Conv87J55z8Kiev887Rq3k5nlP9vvEWTAbkGkh51E0ofjj9X-tfjWaaXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614613219</pqid></control><display><type>article</type><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</creator><creatorcontrib>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</creatorcontrib><description>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high (
r
= 0.934,
b
0
= 10.408, and
b
1
= 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-014-0555-4</identifier><identifier>PMID: 24957017</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Biological and Medical Physics ; Biophysics ; Chromosome aberrations ; Correlation coefficient ; Deoxyribonucleic acid ; DNA ; DNA Breaks - radiation effects ; Dose-Response Relationship, Radiation ; Ecosystems ; Effects of Radiation/Radiation Protection ; Environmental Physics ; Female ; Fluorescence ; Genetic effects ; Humans ; Hybridization ; In Situ Hybridization, Fluorescence ; Irradiation ; Lymphocytes ; Lymphocytes - metabolism ; Lymphocytes - radiation effects ; Monitoring/Environmental Analysis ; Original Paper ; Physics ; Physics and Astronomy ; Reproducibility of Results ; Variance analysis ; X-rays ; X-Rays - adverse effects ; Young Adult</subject><ispartof>Radiation and environmental biophysics, 2014-11, Vol.53 (4), p.713-718</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</citedby><cites>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-014-0555-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-014-0555-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24957017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortés-Gutiérrez, Elva I.</creatorcontrib><creatorcontrib>Dávila-Rodríguez, Martha I.</creatorcontrib><creatorcontrib>Cerda-Flores, Ricardo M.</creatorcontrib><creatorcontrib>Fernández, José Luis</creatorcontrib><creatorcontrib>López-Fernández, Carmen</creatorcontrib><creatorcontrib>Gosálvez, Jaime</creatorcontrib><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high (
r
= 0.934,
b
0
= 10.408, and
b
1
= 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</description><subject>Adult</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chromosome aberrations</subject><subject>Correlation coefficient</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks - radiation effects</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Environmental Physics</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Genetic effects</subject><subject>Humans</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Irradiation</subject><subject>Lymphocytes</subject><subject>Lymphocytes - metabolism</subject><subject>Lymphocytes - radiation effects</subject><subject>Monitoring/Environmental Analysis</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reproducibility of Results</subject><subject>Variance analysis</subject><subject>X-rays</subject><subject>X-Rays - adverse effects</subject><subject>Young Adult</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1OGzEQxy0EgvDxAFyQJS69GGb8mT1SUgoSgkOLxAlrszubLE3Wwd4cuPUd-oY8SR0FEKpUcRqN5je_sfVn7BDhBAHcaQLQiAJQCzDGCL3BBqiVFBKKYpMNQAEKq_T9DttN6REAnbXFNtuRujAudwP2cJeIh4b3U-Kjr6OX338urn5c8p6qadc-LYk3IfKact-33YSPbs74OFL5q5wQbzseKS1ClxV94NN2MuV1SJRWwnsRy-e0z7aacpbo4LXusbuLbz_PL8X17fer87NrUWlnemFqAgQcjhWMi0JbQnRYSmM0YCVtiaqRThEVSJaMbVBWlobgLNZ2SHWt9tiXtXcRQ3516v28TRXNZmVHYZk8WmVAGZvr5ygap7VTJqPH_6CPYRm7_JEVpS0qiUWmcE1VMaQUqfGL2M7L-OwR_Conv87J55z8Kiev887Rq3k5nlP9vvEWTAbkGkh51E0ofjj9X-tfjWaaXQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Cortés-Gutiérrez, Elva I.</creator><creator>Dávila-Rodríguez, Martha I.</creator><creator>Cerda-Flores, Ricardo M.</creator><creator>Fernández, José Luis</creator><creator>López-Fernández, Carmen</creator><creator>Gosálvez, Jaime</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><author>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chromosome aberrations</topic><topic>Correlation coefficient</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks - radiation effects</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Environmental Physics</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Genetic effects</topic><topic>Humans</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Irradiation</topic><topic>Lymphocytes</topic><topic>Lymphocytes - metabolism</topic><topic>Lymphocytes - radiation effects</topic><topic>Monitoring/Environmental Analysis</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reproducibility of Results</topic><topic>Variance analysis</topic><topic>X-rays</topic><topic>X-Rays - adverse effects</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés-Gutiérrez, Elva I.</creatorcontrib><creatorcontrib>Dávila-Rodríguez, Martha I.</creatorcontrib><creatorcontrib>Cerda-Flores, Ricardo M.</creatorcontrib><creatorcontrib>Fernández, José Luis</creatorcontrib><creatorcontrib>López-Fernández, Carmen</creatorcontrib><creatorcontrib>Gosálvez, Jaime</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés-Gutiérrez, Elva I.</au><au>Dávila-Rodríguez, Martha I.</au><au>Cerda-Flores, Ricardo M.</au><au>Fernández, José Luis</au><au>López-Fernández, Carmen</au><au>Gosálvez, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>53</volume><issue>4</issue><spage>713</spage><epage>718</epage><pages>713-718</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high (
r
= 0.934,
b
0
= 10.408, and
b
1
= 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24957017</pmid><doi>10.1007/s00411-014-0555-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-634X |
ispartof | Radiation and environmental biophysics, 2014-11, Vol.53 (4), p.713-718 |
issn | 0301-634X 1432-2099 |
language | eng |
recordid | cdi_proquest_miscellaneous_1635035616 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adult Biological and Medical Physics Biophysics Chromosome aberrations Correlation coefficient Deoxyribonucleic acid DNA DNA Breaks - radiation effects Dose-Response Relationship, Radiation Ecosystems Effects of Radiation/Radiation Protection Environmental Physics Female Fluorescence Genetic effects Humans Hybridization In Situ Hybridization, Fluorescence Irradiation Lymphocytes Lymphocytes - metabolism Lymphocytes - radiation effects Monitoring/Environmental Analysis Original Paper Physics Physics and Astronomy Reproducibility of Results Variance analysis X-rays X-Rays - adverse effects Young Adult |
title | Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20DBD%E2%80%93FISH%20technique%20for%20detecting%20DNA%20breakage%20in%20response%20to%20high%20doses%20of%20X-rays&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Cort%C3%A9s-Guti%C3%A9rrez,%20Elva%20I.&rft.date=2014-11-01&rft.volume=53&rft.issue=4&rft.spage=713&rft.epage=718&rft.pages=713-718&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-014-0555-4&rft_dat=%3Cproquest_cross%3E3467313741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1614613219&rft_id=info:pmid/24957017&rfr_iscdi=true |