Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays

The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation and environmental biophysics 2014-11, Vol.53 (4), p.713-718
Hauptverfasser: Cortés-Gutiérrez, Elva I., Dávila-Rodríguez, Martha I., Cerda-Flores, Ricardo M., Fernández, José Luis, López-Fernández, Carmen, Gosálvez, Jaime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 4
container_start_page 713
container_title Radiation and environmental biophysics
container_volume 53
creator Cortés-Gutiérrez, Elva I.
Dávila-Rodríguez, Martha I.
Cerda-Flores, Ricardo M.
Fernández, José Luis
López-Fernández, Carmen
Gosálvez, Jaime
description The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high ( r  = 0.934, b 0  = 10.408, and b 1  = 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.
doi_str_mv 10.1007/s00411-014-0555-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635035616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3467313741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</originalsourceid><addsrcrecordid>eNqFkc1OGzEQxy0EgvDxAFyQJS69GGb8mT1SUgoSgkOLxAlrszubLE3Wwd4cuPUd-oY8SR0FEKpUcRqN5je_sfVn7BDhBAHcaQLQiAJQCzDGCL3BBqiVFBKKYpMNQAEKq_T9DttN6REAnbXFNtuRujAudwP2cJeIh4b3U-Kjr6OX338urn5c8p6qadc-LYk3IfKact-33YSPbs74OFL5q5wQbzseKS1ClxV94NN2MuV1SJRWwnsRy-e0z7aacpbo4LXusbuLbz_PL8X17fer87NrUWlnemFqAgQcjhWMi0JbQnRYSmM0YCVtiaqRThEVSJaMbVBWlobgLNZ2SHWt9tiXtXcRQ3516v28TRXNZmVHYZk8WmVAGZvr5ygap7VTJqPH_6CPYRm7_JEVpS0qiUWmcE1VMaQUqfGL2M7L-OwR_Conv87J55z8Kiev887Rq3k5nlP9vvEWTAbkGkh51E0ofjj9X-tfjWaaXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614613219</pqid></control><display><type>article</type><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</creator><creatorcontrib>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</creatorcontrib><description>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high ( r  = 0.934, b 0  = 10.408, and b 1  = 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-014-0555-4</identifier><identifier>PMID: 24957017</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Biological and Medical Physics ; Biophysics ; Chromosome aberrations ; Correlation coefficient ; Deoxyribonucleic acid ; DNA ; DNA Breaks - radiation effects ; Dose-Response Relationship, Radiation ; Ecosystems ; Effects of Radiation/Radiation Protection ; Environmental Physics ; Female ; Fluorescence ; Genetic effects ; Humans ; Hybridization ; In Situ Hybridization, Fluorescence ; Irradiation ; Lymphocytes ; Lymphocytes - metabolism ; Lymphocytes - radiation effects ; Monitoring/Environmental Analysis ; Original Paper ; Physics ; Physics and Astronomy ; Reproducibility of Results ; Variance analysis ; X-rays ; X-Rays - adverse effects ; Young Adult</subject><ispartof>Radiation and environmental biophysics, 2014-11, Vol.53 (4), p.713-718</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</citedby><cites>FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-014-0555-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-014-0555-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24957017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortés-Gutiérrez, Elva I.</creatorcontrib><creatorcontrib>Dávila-Rodríguez, Martha I.</creatorcontrib><creatorcontrib>Cerda-Flores, Ricardo M.</creatorcontrib><creatorcontrib>Fernández, José Luis</creatorcontrib><creatorcontrib>López-Fernández, Carmen</creatorcontrib><creatorcontrib>Gosálvez, Jaime</creatorcontrib><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high ( r  = 0.934, b 0  = 10.408, and b 1  = 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</description><subject>Adult</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chromosome aberrations</subject><subject>Correlation coefficient</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks - radiation effects</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Environmental Physics</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Genetic effects</subject><subject>Humans</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Irradiation</subject><subject>Lymphocytes</subject><subject>Lymphocytes - metabolism</subject><subject>Lymphocytes - radiation effects</subject><subject>Monitoring/Environmental Analysis</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reproducibility of Results</subject><subject>Variance analysis</subject><subject>X-rays</subject><subject>X-Rays - adverse effects</subject><subject>Young Adult</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1OGzEQxy0EgvDxAFyQJS69GGb8mT1SUgoSgkOLxAlrszubLE3Wwd4cuPUd-oY8SR0FEKpUcRqN5je_sfVn7BDhBAHcaQLQiAJQCzDGCL3BBqiVFBKKYpMNQAEKq_T9DttN6REAnbXFNtuRujAudwP2cJeIh4b3U-Kjr6OX338urn5c8p6qadc-LYk3IfKact-33YSPbs74OFL5q5wQbzseKS1ClxV94NN2MuV1SJRWwnsRy-e0z7aacpbo4LXusbuLbz_PL8X17fer87NrUWlnemFqAgQcjhWMi0JbQnRYSmM0YCVtiaqRThEVSJaMbVBWlobgLNZ2SHWt9tiXtXcRQ3516v28TRXNZmVHYZk8WmVAGZvr5ygap7VTJqPH_6CPYRm7_JEVpS0qiUWmcE1VMaQUqfGL2M7L-OwR_Conv87J55z8Kiev887Rq3k5nlP9vvEWTAbkGkh51E0ofjj9X-tfjWaaXQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Cortés-Gutiérrez, Elva I.</creator><creator>Dávila-Rodríguez, Martha I.</creator><creator>Cerda-Flores, Ricardo M.</creator><creator>Fernández, José Luis</creator><creator>López-Fernández, Carmen</creator><creator>Gosálvez, Jaime</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</title><author>Cortés-Gutiérrez, Elva I. ; Dávila-Rodríguez, Martha I. ; Cerda-Flores, Ricardo M. ; Fernández, José Luis ; López-Fernández, Carmen ; Gosálvez, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5de01018b30b9946e1171a255401c26a13f273ee91e6e56f12c6e80761d68edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chromosome aberrations</topic><topic>Correlation coefficient</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks - radiation effects</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Environmental Physics</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Genetic effects</topic><topic>Humans</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Irradiation</topic><topic>Lymphocytes</topic><topic>Lymphocytes - metabolism</topic><topic>Lymphocytes - radiation effects</topic><topic>Monitoring/Environmental Analysis</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reproducibility of Results</topic><topic>Variance analysis</topic><topic>X-rays</topic><topic>X-Rays - adverse effects</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés-Gutiérrez, Elva I.</creatorcontrib><creatorcontrib>Dávila-Rodríguez, Martha I.</creatorcontrib><creatorcontrib>Cerda-Flores, Ricardo M.</creatorcontrib><creatorcontrib>Fernández, José Luis</creatorcontrib><creatorcontrib>López-Fernández, Carmen</creatorcontrib><creatorcontrib>Gosálvez, Jaime</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés-Gutiérrez, Elva I.</au><au>Dávila-Rodríguez, Martha I.</au><au>Cerda-Flores, Ricardo M.</au><au>Fernández, José Luis</au><au>López-Fernández, Carmen</au><au>Gosálvez, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>53</volume><issue>4</issue><spage>713</spage><epage>718</epage><pages>713-718</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>The aim of this study was to generate a dose–response curve using the DNA breakage detection–fluorescent in situ hybridization (DBD–FISH) test as a biomarker of initial genetic effects induced by high doses of X-rays. A dose–response curve was obtained by measuring the ex vivo responses to increasing doses (0–50 Gy) of X-rays in the peripheral blood lymphocytes of ten healthy donors. The overall dose–response curve was constructed using integrated density (ID; area × fluorescence intensity) as a measure of genetic damage induced by irradiation. The correlation coefficient was high ( r  = 0.934, b 0  = 10.408, and b 1  = 0.094). One-way ANOVA with the Student–Newman–Keuls test for multiple comparisons showed significant differences among the average ln ID values according to dose. Our results suggest the usefulness of the DBD–FISH technique for measuring intrinsic individual cellular radio sensitivity ex vivo.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24957017</pmid><doi>10.1007/s00411-014-0555-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-634X
ispartof Radiation and environmental biophysics, 2014-11, Vol.53 (4), p.713-718
issn 0301-634X
1432-2099
language eng
recordid cdi_proquest_miscellaneous_1635035616
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adult
Biological and Medical Physics
Biophysics
Chromosome aberrations
Correlation coefficient
Deoxyribonucleic acid
DNA
DNA Breaks - radiation effects
Dose-Response Relationship, Radiation
Ecosystems
Effects of Radiation/Radiation Protection
Environmental Physics
Female
Fluorescence
Genetic effects
Humans
Hybridization
In Situ Hybridization, Fluorescence
Irradiation
Lymphocytes
Lymphocytes - metabolism
Lymphocytes - radiation effects
Monitoring/Environmental Analysis
Original Paper
Physics
Physics and Astronomy
Reproducibility of Results
Variance analysis
X-rays
X-Rays - adverse effects
Young Adult
title Use of the DBD–FISH technique for detecting DNA breakage in response to high doses of X-rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20DBD%E2%80%93FISH%20technique%20for%20detecting%20DNA%20breakage%20in%20response%20to%20high%20doses%20of%20X-rays&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Cort%C3%A9s-Guti%C3%A9rrez,%20Elva%20I.&rft.date=2014-11-01&rft.volume=53&rft.issue=4&rft.spage=713&rft.epage=718&rft.pages=713-718&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-014-0555-4&rft_dat=%3Cproquest_cross%3E3467313741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1614613219&rft_id=info:pmid/24957017&rfr_iscdi=true