Modeling endocrine regulation of the menstrual cycle using delay differential equations

•Delay differential equations model hormonal regulation of the menstrual cycle.•Data from the literature are used to estimate model parameters.•Model simulations reveal normal and abnormal menstrual cycles.•Bifurcations with respect to sensitive parameters are studied.•Effects of exogenous administr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2014-11, Vol.257, p.11-22
Hauptverfasser: Harris, Leona A., Selgrade, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 11
container_title Mathematical biosciences
container_volume 257
creator Harris, Leona A.
Selgrade, James F.
description •Delay differential equations model hormonal regulation of the menstrual cycle.•Data from the literature are used to estimate model parameters.•Model simulations reveal normal and abnormal menstrual cycles.•Bifurcations with respect to sensitive parameters are studied.•Effects of exogenous administration of each ovarian hormone on the cycle are tested. This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible “abnormal” condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system.
doi_str_mv 10.1016/j.mbs.2014.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635030929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556414001667</els_id><sourcerecordid>1635030929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-124be95b21f9201b69bb97d17c00a11e906f2479376ea87ff76bb9e968ba72db3</originalsourceid><addsrcrecordid>eNqNkEtP3DAURq2qVZlCf0A3VZbdJL3XSexYXSHEoxJVNyCWlu1cU4_yADtBmn-Pp0O7RKy88DmfdA9jXxAqBBTft9VoU8UBmwq6ChDfsQ12UpU11s17tgHgbdm2ojlin1LaAqBEFB_ZEW-xA8W7Dbv7Nfc0hOm-oKmfXQwTFZHu18EsYZ6K2RfLHypGmtISVzMUbucGKta0N7JodkUfvKdI0xLyNz2uf8V0wj54MyT6_PIes9uL85uzq_L69-XPs9Pr0tWdWErkjSXVWo5e5TusUNYq2aN0AAaRFAjPG6lqKch00nspMkBKdNZI3tv6mH077D7E-XGltOgxJEfDYCaa16RR1C3U-Vb1BpQrJRtoeEbxgLo4pxTJ64cYRhN3GkHv0-utzun1Pr2GTuf02fn6Mr_akfr_xr_WGfhxACj3eAoUdXKBJkd9iOQW3c_hlfln0oyUcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629974042</pqid></control><display><type>article</type><title>Modeling endocrine regulation of the menstrual cycle using delay differential equations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Harris, Leona A. ; Selgrade, James F.</creator><creatorcontrib>Harris, Leona A. ; Selgrade, James F.</creatorcontrib><description>•Delay differential equations model hormonal regulation of the menstrual cycle.•Data from the literature are used to estimate model parameters.•Model simulations reveal normal and abnormal menstrual cycles.•Bifurcations with respect to sensitive parameters are studied.•Effects of exogenous administration of each ovarian hormone on the cycle are tested. This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible “abnormal” condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2014.08.011</identifier><identifier>PMID: 25180928</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bifurcation ; Estradiol ; Estradiol - physiology ; Female ; Follicle ; Humans ; Menstrual Cycle - physiology ; Models, Biological ; Parameter ; Pituitary gland ; Pituitary Gland - physiology</subject><ispartof>Mathematical biosciences, 2014-11, Vol.257, p.11-22</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-124be95b21f9201b69bb97d17c00a11e906f2479376ea87ff76bb9e968ba72db3</citedby><cites>FETCH-LOGICAL-c386t-124be95b21f9201b69bb97d17c00a11e906f2479376ea87ff76bb9e968ba72db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2014.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25180928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Leona A.</creatorcontrib><creatorcontrib>Selgrade, James F.</creatorcontrib><title>Modeling endocrine regulation of the menstrual cycle using delay differential equations</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•Delay differential equations model hormonal regulation of the menstrual cycle.•Data from the literature are used to estimate model parameters.•Model simulations reveal normal and abnormal menstrual cycles.•Bifurcations with respect to sensitive parameters are studied.•Effects of exogenous administration of each ovarian hormone on the cycle are tested. This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible “abnormal” condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system.</description><subject>Bifurcation</subject><subject>Estradiol</subject><subject>Estradiol - physiology</subject><subject>Female</subject><subject>Follicle</subject><subject>Humans</subject><subject>Menstrual Cycle - physiology</subject><subject>Models, Biological</subject><subject>Parameter</subject><subject>Pituitary gland</subject><subject>Pituitary Gland - physiology</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtP3DAURq2qVZlCf0A3VZbdJL3XSexYXSHEoxJVNyCWlu1cU4_yADtBmn-Pp0O7RKy88DmfdA9jXxAqBBTft9VoU8UBmwq6ChDfsQ12UpU11s17tgHgbdm2ojlin1LaAqBEFB_ZEW-xA8W7Dbv7Nfc0hOm-oKmfXQwTFZHu18EsYZ6K2RfLHypGmtISVzMUbucGKta0N7JodkUfvKdI0xLyNz2uf8V0wj54MyT6_PIes9uL85uzq_L69-XPs9Pr0tWdWErkjSXVWo5e5TusUNYq2aN0AAaRFAjPG6lqKch00nspMkBKdNZI3tv6mH077D7E-XGltOgxJEfDYCaa16RR1C3U-Vb1BpQrJRtoeEbxgLo4pxTJ64cYRhN3GkHv0-utzun1Pr2GTuf02fn6Mr_akfr_xr_WGfhxACj3eAoUdXKBJkd9iOQW3c_hlfln0oyUcA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Harris, Leona A.</creator><creator>Selgrade, James F.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201411</creationdate><title>Modeling endocrine regulation of the menstrual cycle using delay differential equations</title><author>Harris, Leona A. ; Selgrade, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-124be95b21f9201b69bb97d17c00a11e906f2479376ea87ff76bb9e968ba72db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bifurcation</topic><topic>Estradiol</topic><topic>Estradiol - physiology</topic><topic>Female</topic><topic>Follicle</topic><topic>Humans</topic><topic>Menstrual Cycle - physiology</topic><topic>Models, Biological</topic><topic>Parameter</topic><topic>Pituitary gland</topic><topic>Pituitary Gland - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Leona A.</creatorcontrib><creatorcontrib>Selgrade, James F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Leona A.</au><au>Selgrade, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling endocrine regulation of the menstrual cycle using delay differential equations</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2014-11</date><risdate>2014</risdate><volume>257</volume><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•Delay differential equations model hormonal regulation of the menstrual cycle.•Data from the literature are used to estimate model parameters.•Model simulations reveal normal and abnormal menstrual cycles.•Bifurcations with respect to sensitive parameters are studied.•Effects of exogenous administration of each ovarian hormone on the cycle are tested. This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible “abnormal” condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25180928</pmid><doi>10.1016/j.mbs.2014.08.011</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2014-11, Vol.257, p.11-22
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_1635030929
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bifurcation
Estradiol
Estradiol - physiology
Female
Follicle
Humans
Menstrual Cycle - physiology
Models, Biological
Parameter
Pituitary gland
Pituitary Gland - physiology
title Modeling endocrine regulation of the menstrual cycle using delay differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20endocrine%20regulation%20of%20the%20menstrual%20cycle%20using%20delay%20differential%20equations&rft.jtitle=Mathematical%20biosciences&rft.au=Harris,%20Leona%20A.&rft.date=2014-11&rft.volume=257&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2014.08.011&rft_dat=%3Cproquest_cross%3E1635030929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629974042&rft_id=info:pmid/25180928&rft_els_id=S0025556414001667&rfr_iscdi=true