impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies
AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2014-12, Vol.117 (6), p.1614-1633 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 6 |
container_start_page | 1614 |
container_title | Journal of applied microbiology |
container_volume | 117 |
creator | Omotade, T.O Bernhards, R.C Klimko, C.P Matthews, M.E Hill, A.J Hunter, M.S Webster, W.M Bozue, J.A Welkos, S.L Cote, C.K |
description | AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS: Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination‐inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV‐A, UV‐B and UV‐C radiation, employed after a 60‐min germination‐induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination‐induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS: These results provide evidence that the deployment of an optimal combination strategy of germination‐induction/secondary disinfection may be a promising aspect of wide‐area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY: By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place. |
doi_str_mv | 10.1111/jam.12644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635023564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635023564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4404-feb99eb4b0ca976e6a9ae7f1b7210fc32e060b3171814df0c713a2ea3f19c9253</originalsourceid><addsrcrecordid>eNp1kstu1TAQhiMEohdY8AIQCVWCRVrf4sTLUnFVEQvoOpo441MfJXZqO0J9Ax4bp-e0lZDwxuPx98_Y_l0Uryg5pXmcbWE6pUwK8aQ4pFzWFZMNe3oXi6omDTsojmLcEkI5qeXz4oDVVEmi2GHxx04z6FR6U1o3LNq6TbnBMFkHyXq35j-AtuO4xBJcug55sUbDYzpdLyHLLLqYt-LsA8YyS2ef0CULYxlRezdAuC2HNUrwUD6mAAmzNr4onhkYI77cz8fF1aePvy6-VJc_Pn-9OL-stBBEVAZ7pbAXPdGgGokSFGBjaN8wSozmDIkkPacNbakYDNEN5cAQuKFKK1bz4-Ldru4c_M2CMXWTjRrHERz6JXZU8powXkuR0bf_oFu_BJdPl6n8xLRtVJup9ztKBx9jQNPNwU75sh0l3WpPl-3p7uzJ7Ot9xaWfcHgg7_3IwMkegKhhNAFcfu9HrlWctGzlznbcbzvi7f87dt_Ov9-3frNTGPAdbEKuevWTEVrnX9G2UlL-F-h7shI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626718798</pqid></control><display><type>article</type><title>impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Omotade, T.O ; Bernhards, R.C ; Klimko, C.P ; Matthews, M.E ; Hill, A.J ; Hunter, M.S ; Webster, W.M ; Bozue, J.A ; Welkos, S.L ; Cote, C.K</creator><creatorcontrib>Omotade, T.O ; Bernhards, R.C ; Klimko, C.P ; Matthews, M.E ; Hill, A.J ; Hunter, M.S ; Webster, W.M ; Bozue, J.A ; Welkos, S.L ; Cote, C.K</creatorcontrib><description>AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS: Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination‐inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV‐A, UV‐B and UV‐C radiation, employed after a 60‐min germination‐induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination‐induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS: These results provide evidence that the deployment of an optimal combination strategy of germination‐induction/secondary disinfection may be a promising aspect of wide‐area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY: By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.12644</identifier><identifier>PMID: 25196092</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Published for the Society for Applied Bacteriology by Blackwell Science</publisher><subject>anthrax ; Bacillus anthracis ; Bacillus anthracis - drug effects ; Bacillus anthracis - physiology ; Bacillus anthracis - radiation effects ; Bacillus anthracis - ultrastructure ; Bacillus thuringiensis ; Bacillus thuringiensis - drug effects ; Bacillus thuringiensis - physiology ; Bacillus thuringiensis - radiation effects ; Bacillus thuringiensis - ultrastructure ; Biological and medical sciences ; Bioremediation ; bleaching agents ; decontamination ; Decontamination - methods ; disinfectants ; Disinfectants - pharmacology ; Disinfection ; environmental impact ; formaldehyde ; Formaldehyde - pharmacology ; Fundamental and applied biological sciences. Psychology ; Germination ; Humans ; hydrogen peroxide ; Hydrogen Peroxide - pharmacology ; Microbiology ; remediation ; spores ; Spores, Bacterial - drug effects ; Spores, Bacterial - growth & development ; Spores, Bacterial - radiation effects ; Spores, Bacterial - ultrastructure ; ultraviolet radiation ; Ultraviolet Rays ; virulence</subject><ispartof>Journal of applied microbiology, 2014-12, Vol.117 (6), p.1614-1633</ispartof><rights>Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4404-feb99eb4b0ca976e6a9ae7f1b7210fc32e060b3171814df0c713a2ea3f19c9253</citedby><cites>FETCH-LOGICAL-c4404-feb99eb4b0ca976e6a9ae7f1b7210fc32e060b3171814df0c713a2ea3f19c9253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.12644$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.12644$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28930822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25196092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Omotade, T.O</creatorcontrib><creatorcontrib>Bernhards, R.C</creatorcontrib><creatorcontrib>Klimko, C.P</creatorcontrib><creatorcontrib>Matthews, M.E</creatorcontrib><creatorcontrib>Hill, A.J</creatorcontrib><creatorcontrib>Hunter, M.S</creatorcontrib><creatorcontrib>Webster, W.M</creatorcontrib><creatorcontrib>Bozue, J.A</creatorcontrib><creatorcontrib>Welkos, S.L</creatorcontrib><creatorcontrib>Cote, C.K</creatorcontrib><title>impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS: Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination‐inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV‐A, UV‐B and UV‐C radiation, employed after a 60‐min germination‐induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination‐induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS: These results provide evidence that the deployment of an optimal combination strategy of germination‐induction/secondary disinfection may be a promising aspect of wide‐area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY: By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.</description><subject>anthrax</subject><subject>Bacillus anthracis</subject><subject>Bacillus anthracis - drug effects</subject><subject>Bacillus anthracis - physiology</subject><subject>Bacillus anthracis - radiation effects</subject><subject>Bacillus anthracis - ultrastructure</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - drug effects</subject><subject>Bacillus thuringiensis - physiology</subject><subject>Bacillus thuringiensis - radiation effects</subject><subject>Bacillus thuringiensis - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Bioremediation</subject><subject>bleaching agents</subject><subject>decontamination</subject><subject>Decontamination - methods</subject><subject>disinfectants</subject><subject>Disinfectants - pharmacology</subject><subject>Disinfection</subject><subject>environmental impact</subject><subject>formaldehyde</subject><subject>Formaldehyde - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Germination</subject><subject>Humans</subject><subject>hydrogen peroxide</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Microbiology</subject><subject>remediation</subject><subject>spores</subject><subject>Spores, Bacterial - drug effects</subject><subject>Spores, Bacterial - growth & development</subject><subject>Spores, Bacterial - radiation effects</subject><subject>Spores, Bacterial - ultrastructure</subject><subject>ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>virulence</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kstu1TAQhiMEohdY8AIQCVWCRVrf4sTLUnFVEQvoOpo441MfJXZqO0J9Ax4bp-e0lZDwxuPx98_Y_l0Uryg5pXmcbWE6pUwK8aQ4pFzWFZMNe3oXi6omDTsojmLcEkI5qeXz4oDVVEmi2GHxx04z6FR6U1o3LNq6TbnBMFkHyXq35j-AtuO4xBJcug55sUbDYzpdLyHLLLqYt-LsA8YyS2ef0CULYxlRezdAuC2HNUrwUD6mAAmzNr4onhkYI77cz8fF1aePvy6-VJc_Pn-9OL-stBBEVAZ7pbAXPdGgGokSFGBjaN8wSozmDIkkPacNbakYDNEN5cAQuKFKK1bz4-Ldru4c_M2CMXWTjRrHERz6JXZU8powXkuR0bf_oFu_BJdPl6n8xLRtVJup9ztKBx9jQNPNwU75sh0l3WpPl-3p7uzJ7Ot9xaWfcHgg7_3IwMkegKhhNAFcfu9HrlWctGzlznbcbzvi7f87dt_Ov9-3frNTGPAdbEKuevWTEVrnX9G2UlL-F-h7shI</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Omotade, T.O</creator><creator>Bernhards, R.C</creator><creator>Klimko, C.P</creator><creator>Matthews, M.E</creator><creator>Hill, A.J</creator><creator>Hunter, M.S</creator><creator>Webster, W.M</creator><creator>Bozue, J.A</creator><creator>Welkos, S.L</creator><creator>Cote, C.K</creator><general>Published for the Society for Applied Bacteriology by Blackwell Science</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201412</creationdate><title>impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies</title><author>Omotade, T.O ; Bernhards, R.C ; Klimko, C.P ; Matthews, M.E ; Hill, A.J ; Hunter, M.S ; Webster, W.M ; Bozue, J.A ; Welkos, S.L ; Cote, C.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4404-feb99eb4b0ca976e6a9ae7f1b7210fc32e060b3171814df0c713a2ea3f19c9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>anthrax</topic><topic>Bacillus anthracis</topic><topic>Bacillus anthracis - drug effects</topic><topic>Bacillus anthracis - physiology</topic><topic>Bacillus anthracis - radiation effects</topic><topic>Bacillus anthracis - ultrastructure</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - drug effects</topic><topic>Bacillus thuringiensis - physiology</topic><topic>Bacillus thuringiensis - radiation effects</topic><topic>Bacillus thuringiensis - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Bioremediation</topic><topic>bleaching agents</topic><topic>decontamination</topic><topic>Decontamination - methods</topic><topic>disinfectants</topic><topic>Disinfectants - pharmacology</topic><topic>Disinfection</topic><topic>environmental impact</topic><topic>formaldehyde</topic><topic>Formaldehyde - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Germination</topic><topic>Humans</topic><topic>hydrogen peroxide</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Microbiology</topic><topic>remediation</topic><topic>spores</topic><topic>Spores, Bacterial - drug effects</topic><topic>Spores, Bacterial - growth & development</topic><topic>Spores, Bacterial - radiation effects</topic><topic>Spores, Bacterial - ultrastructure</topic><topic>ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omotade, T.O</creatorcontrib><creatorcontrib>Bernhards, R.C</creatorcontrib><creatorcontrib>Klimko, C.P</creatorcontrib><creatorcontrib>Matthews, M.E</creatorcontrib><creatorcontrib>Hill, A.J</creatorcontrib><creatorcontrib>Hunter, M.S</creatorcontrib><creatorcontrib>Webster, W.M</creatorcontrib><creatorcontrib>Bozue, J.A</creatorcontrib><creatorcontrib>Welkos, S.L</creatorcontrib><creatorcontrib>Cote, C.K</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omotade, T.O</au><au>Bernhards, R.C</au><au>Klimko, C.P</au><au>Matthews, M.E</au><au>Hill, A.J</au><au>Hunter, M.S</au><au>Webster, W.M</au><au>Bozue, J.A</au><au>Welkos, S.L</au><au>Cote, C.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2014-12</date><risdate>2014</risdate><volume>117</volume><issue>6</issue><spage>1614</spage><epage>1633</epage><pages>1614-1633</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS: Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination‐inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV‐A, UV‐B and UV‐C radiation, employed after a 60‐min germination‐induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination‐induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS: These results provide evidence that the deployment of an optimal combination strategy of germination‐induction/secondary disinfection may be a promising aspect of wide‐area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY: By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.</abstract><cop>Oxford</cop><pub>Published for the Society for Applied Bacteriology by Blackwell Science</pub><pmid>25196092</pmid><doi>10.1111/jam.12644</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2014-12, Vol.117 (6), p.1614-1633 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_miscellaneous_1635023564 |
source | MEDLINE; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | anthrax Bacillus anthracis Bacillus anthracis - drug effects Bacillus anthracis - physiology Bacillus anthracis - radiation effects Bacillus anthracis - ultrastructure Bacillus thuringiensis Bacillus thuringiensis - drug effects Bacillus thuringiensis - physiology Bacillus thuringiensis - radiation effects Bacillus thuringiensis - ultrastructure Biological and medical sciences Bioremediation bleaching agents decontamination Decontamination - methods disinfectants Disinfectants - pharmacology Disinfection environmental impact formaldehyde Formaldehyde - pharmacology Fundamental and applied biological sciences. Psychology Germination Humans hydrogen peroxide Hydrogen Peroxide - pharmacology Microbiology remediation spores Spores, Bacterial - drug effects Spores, Bacterial - growth & development Spores, Bacterial - radiation effects Spores, Bacterial - ultrastructure ultraviolet radiation Ultraviolet Rays virulence |
title | impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=impact%20of%20inducing%20germination%20of%20Bacillus%20anthracis%20and%20Bacillus%20thuringiensis%20spores%20on%20potential%20secondary%20decontamination%20strategies&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Omotade,%20T.O&rft.date=2014-12&rft.volume=117&rft.issue=6&rft.spage=1614&rft.epage=1633&rft.pages=1614-1633&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/jam.12644&rft_dat=%3Cproquest_cross%3E1635023564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626718798&rft_id=info:pmid/25196092&rfr_iscdi=true |