Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons

Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-09, Vol.83 (6), p.1418-1430
Hauptverfasser: Thome, Christian, Kelly, Tony, Yanez, Antonio, Schultz, Christian, Engelhardt, Maren, Cambridge, Sidney B., Both, Martin, Draguhn, Andreas, Beck, Heinz, Egorov, Alexei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1430
container_issue 6
container_start_page 1418
container_title Neuron (Cambridge, Mass.)
container_volume 83
creator Thome, Christian
Kelly, Tony
Yanez, Antonio
Schultz, Christian
Engelhardt, Maren
Cambridge, Sidney B.
Both, Martin
Draguhn, Andreas
Beck, Heinz
Egorov, Alexei V.
description Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells. [Display omitted] •Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.
doi_str_mv 10.1016/j.neuron.2014.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635017896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314006886</els_id><sourcerecordid>1635017896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoabZp_0EIhl5ysTv68kqXQNikTSA0hbZnoZXHQYtXciR76f77Kt00hx5aEMzlmXc08xBySqGhQNuPmybgnGJoGFDRgGqA8iOyoKCXtaBavyILULqtW7bkx-RtzhsooNT0DTlmsgBLEAtyf_kzhnplU9r78FBdYeiSnzBXqxh2uK--Jr_zAz5gV33bBztO3lW3YZynyofqxo9jdHY72qH68vsz-R153dsh4_vnekJ-fLr-vrqp7-4_364u72onuZ7qVnVSSMmBl4daC6UsMlj3znYcxBodc8g0txqZY1ZZ11vpehRKoFNqzU_I-SF3TPFxxjyZrc8Oh8EGjHM2tOUS6LIc4P-obLlWWlBV0A9_oZs4p1AWKYEMgLXQ6kKJA-VSzDlhb8bktzbtDQXz5MZszMGNeXJjQJniprSdPYfP6y12L01_ZBTg4gBgOdzOYzLZeQwOO5_QTaaL_t8TfgGnaqF7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620026069</pqid></control><display><type>article</type><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</creator><creatorcontrib>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</creatorcontrib><description>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells. [Display omitted] •Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.08.013</identifier><identifier>PMID: 25199704</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Axons - physiology ; Axons - ultrastructure ; Brain ; Computer Simulation ; Dendrites - physiology ; Dendrites - ultrastructure ; Excitatory Postsynaptic Potentials - physiology ; Female ; Hippocampus - physiology ; Hippocampus - ultrastructure ; Immunohistochemistry ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Models, Neurological ; Morphology ; Neurons ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells - physiology ; Pyramidal Cells - ultrastructure ; Rats ; Rats, Wistar ; Rodents ; Software ; Synaptic Transmission - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2014-09, Vol.83 (6), p.1418-1430</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 17, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</citedby><cites>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2014.08.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25199704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thome, Christian</creatorcontrib><creatorcontrib>Kelly, Tony</creatorcontrib><creatorcontrib>Yanez, Antonio</creatorcontrib><creatorcontrib>Schultz, Christian</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><creatorcontrib>Cambridge, Sidney B.</creatorcontrib><creatorcontrib>Both, Martin</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><creatorcontrib>Beck, Heinz</creatorcontrib><creatorcontrib>Egorov, Alexei V.</creatorcontrib><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells. [Display omitted] •Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Brain</subject><subject>Computer Simulation</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>Hippocampus - physiology</subject><subject>Hippocampus - ultrastructure</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Models, Neurological</subject><subject>Morphology</subject><subject>Neurons</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyramidal Cells - ultrastructure</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Software</subject><subject>Synaptic Transmission - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoabZp_0EIhl5ysTv68kqXQNikTSA0hbZnoZXHQYtXciR76f77Kt00hx5aEMzlmXc08xBySqGhQNuPmybgnGJoGFDRgGqA8iOyoKCXtaBavyILULqtW7bkx-RtzhsooNT0DTlmsgBLEAtyf_kzhnplU9r78FBdYeiSnzBXqxh2uK--Jr_zAz5gV33bBztO3lW3YZynyofqxo9jdHY72qH68vsz-R153dsh4_vnekJ-fLr-vrqp7-4_364u72onuZ7qVnVSSMmBl4daC6UsMlj3znYcxBodc8g0txqZY1ZZ11vpehRKoFNqzU_I-SF3TPFxxjyZrc8Oh8EGjHM2tOUS6LIc4P-obLlWWlBV0A9_oZs4p1AWKYEMgLXQ6kKJA-VSzDlhb8bktzbtDQXz5MZszMGNeXJjQJniprSdPYfP6y12L01_ZBTg4gBgOdzOYzLZeQwOO5_QTaaL_t8TfgGnaqF7</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>Thome, Christian</creator><creator>Kelly, Tony</creator><creator>Yanez, Antonio</creator><creator>Schultz, Christian</creator><creator>Engelhardt, Maren</creator><creator>Cambridge, Sidney B.</creator><creator>Both, Martin</creator><creator>Draguhn, Andreas</creator><creator>Beck, Heinz</creator><creator>Egorov, Alexei V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140917</creationdate><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><author>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Brain</topic><topic>Computer Simulation</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>Hippocampus - physiology</topic><topic>Hippocampus - ultrastructure</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Models, Neurological</topic><topic>Morphology</topic><topic>Neurons</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyramidal Cells - ultrastructure</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Software</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thome, Christian</creatorcontrib><creatorcontrib>Kelly, Tony</creatorcontrib><creatorcontrib>Yanez, Antonio</creatorcontrib><creatorcontrib>Schultz, Christian</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><creatorcontrib>Cambridge, Sidney B.</creatorcontrib><creatorcontrib>Both, Martin</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><creatorcontrib>Beck, Heinz</creatorcontrib><creatorcontrib>Egorov, Alexei V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thome, Christian</au><au>Kelly, Tony</au><au>Yanez, Antonio</au><au>Schultz, Christian</au><au>Engelhardt, Maren</au><au>Cambridge, Sidney B.</au><au>Both, Martin</au><au>Draguhn, Andreas</au><au>Beck, Heinz</au><au>Egorov, Alexei V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-09-17</date><risdate>2014</risdate><volume>83</volume><issue>6</issue><spage>1418</spage><epage>1430</epage><pages>1418-1430</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells. [Display omitted] •Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25199704</pmid><doi>10.1016/j.neuron.2014.08.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-09, Vol.83 (6), p.1418-1430
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1635017896
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Action Potentials - physiology
Animals
Axons - physiology
Axons - ultrastructure
Brain
Computer Simulation
Dendrites - physiology
Dendrites - ultrastructure
Excitatory Postsynaptic Potentials - physiology
Female
Hippocampus - physiology
Hippocampus - ultrastructure
Immunohistochemistry
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal
Models, Neurological
Morphology
Neurons
Organ Culture Techniques
Patch-Clamp Techniques
Pyramidal Cells - physiology
Pyramidal Cells - ultrastructure
Rats
Rats, Wistar
Rodents
Software
Synaptic Transmission - physiology
title Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axon-Carrying%20Dendrites%20Convey%20Privileged%20Synaptic%20Input%20in%20Hippocampal%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Thome,%20Christian&rft.date=2014-09-17&rft.volume=83&rft.issue=6&rft.spage=1418&rft.epage=1430&rft.pages=1418-1430&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.08.013&rft_dat=%3Cproquest_cross%3E1635017896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620026069&rft_id=info:pmid/25199704&rft_els_id=S0896627314006886&rfr_iscdi=true