Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons
Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently de...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2014-09, Vol.83 (6), p.1418-1430 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1430 |
---|---|
container_issue | 6 |
container_start_page | 1418 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 83 |
creator | Thome, Christian Kelly, Tony Yanez, Antonio Schultz, Christian Engelhardt, Maren Cambridge, Sidney B. Both, Martin Draguhn, Andreas Beck, Heinz Egorov, Alexei V. |
description | Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.
[Display omitted]
•Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing
Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons. |
doi_str_mv | 10.1016/j.neuron.2014.08.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1635017896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314006886</els_id><sourcerecordid>1635017896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoabZp_0EIhl5ysTv68kqXQNikTSA0hbZnoZXHQYtXciR76f77Kt00hx5aEMzlmXc08xBySqGhQNuPmybgnGJoGFDRgGqA8iOyoKCXtaBavyILULqtW7bkx-RtzhsooNT0DTlmsgBLEAtyf_kzhnplU9r78FBdYeiSnzBXqxh2uK--Jr_zAz5gV33bBztO3lW3YZynyofqxo9jdHY72qH68vsz-R153dsh4_vnekJ-fLr-vrqp7-4_364u72onuZ7qVnVSSMmBl4daC6UsMlj3znYcxBodc8g0txqZY1ZZ11vpehRKoFNqzU_I-SF3TPFxxjyZrc8Oh8EGjHM2tOUS6LIc4P-obLlWWlBV0A9_oZs4p1AWKYEMgLXQ6kKJA-VSzDlhb8bktzbtDQXz5MZszMGNeXJjQJniprSdPYfP6y12L01_ZBTg4gBgOdzOYzLZeQwOO5_QTaaL_t8TfgGnaqF7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620026069</pqid></control><display><type>article</type><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</creator><creatorcontrib>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</creatorcontrib><description>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.
[Display omitted]
•Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing
Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.08.013</identifier><identifier>PMID: 25199704</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Axons - physiology ; Axons - ultrastructure ; Brain ; Computer Simulation ; Dendrites - physiology ; Dendrites - ultrastructure ; Excitatory Postsynaptic Potentials - physiology ; Female ; Hippocampus - physiology ; Hippocampus - ultrastructure ; Immunohistochemistry ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Models, Neurological ; Morphology ; Neurons ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells - physiology ; Pyramidal Cells - ultrastructure ; Rats ; Rats, Wistar ; Rodents ; Software ; Synaptic Transmission - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2014-09, Vol.83 (6), p.1418-1430</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 17, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</citedby><cites>FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2014.08.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25199704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thome, Christian</creatorcontrib><creatorcontrib>Kelly, Tony</creatorcontrib><creatorcontrib>Yanez, Antonio</creatorcontrib><creatorcontrib>Schultz, Christian</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><creatorcontrib>Cambridge, Sidney B.</creatorcontrib><creatorcontrib>Both, Martin</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><creatorcontrib>Beck, Heinz</creatorcontrib><creatorcontrib>Egorov, Alexei V.</creatorcontrib><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.
[Display omitted]
•Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing
Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Brain</subject><subject>Computer Simulation</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>Hippocampus - physiology</subject><subject>Hippocampus - ultrastructure</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Models, Neurological</subject><subject>Morphology</subject><subject>Neurons</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyramidal Cells - ultrastructure</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Software</subject><subject>Synaptic Transmission - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoabZp_0EIhl5ysTv68kqXQNikTSA0hbZnoZXHQYtXciR76f77Kt00hx5aEMzlmXc08xBySqGhQNuPmybgnGJoGFDRgGqA8iOyoKCXtaBavyILULqtW7bkx-RtzhsooNT0DTlmsgBLEAtyf_kzhnplU9r78FBdYeiSnzBXqxh2uK--Jr_zAz5gV33bBztO3lW3YZynyofqxo9jdHY72qH68vsz-R153dsh4_vnekJ-fLr-vrqp7-4_364u72onuZ7qVnVSSMmBl4daC6UsMlj3znYcxBodc8g0txqZY1ZZ11vpehRKoFNqzU_I-SF3TPFxxjyZrc8Oh8EGjHM2tOUS6LIc4P-obLlWWlBV0A9_oZs4p1AWKYEMgLXQ6kKJA-VSzDlhb8bktzbtDQXz5MZszMGNeXJjQJniprSdPYfP6y12L01_ZBTg4gBgOdzOYzLZeQwOO5_QTaaL_t8TfgGnaqF7</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>Thome, Christian</creator><creator>Kelly, Tony</creator><creator>Yanez, Antonio</creator><creator>Schultz, Christian</creator><creator>Engelhardt, Maren</creator><creator>Cambridge, Sidney B.</creator><creator>Both, Martin</creator><creator>Draguhn, Andreas</creator><creator>Beck, Heinz</creator><creator>Egorov, Alexei V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140917</creationdate><title>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</title><author>Thome, Christian ; Kelly, Tony ; Yanez, Antonio ; Schultz, Christian ; Engelhardt, Maren ; Cambridge, Sidney B. ; Both, Martin ; Draguhn, Andreas ; Beck, Heinz ; Egorov, Alexei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-68d5455303303e99488ae20bfcad304bec2ce293a9e2c2a8acfa5cfe484ec88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Brain</topic><topic>Computer Simulation</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>Hippocampus - physiology</topic><topic>Hippocampus - ultrastructure</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Models, Neurological</topic><topic>Morphology</topic><topic>Neurons</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyramidal Cells - ultrastructure</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Software</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thome, Christian</creatorcontrib><creatorcontrib>Kelly, Tony</creatorcontrib><creatorcontrib>Yanez, Antonio</creatorcontrib><creatorcontrib>Schultz, Christian</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><creatorcontrib>Cambridge, Sidney B.</creatorcontrib><creatorcontrib>Both, Martin</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><creatorcontrib>Beck, Heinz</creatorcontrib><creatorcontrib>Egorov, Alexei V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thome, Christian</au><au>Kelly, Tony</au><au>Yanez, Antonio</au><au>Schultz, Christian</au><au>Engelhardt, Maren</au><au>Cambridge, Sidney B.</au><au>Both, Martin</au><au>Draguhn, Andreas</au><au>Beck, Heinz</au><au>Egorov, Alexei V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-09-17</date><risdate>2014</risdate><volume>83</volume><issue>6</issue><spage>1418</spage><epage>1430</epage><pages>1418-1430</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.
[Display omitted]
•Axons derive from a dendrite in a large proportion of hippocampal pyramidal neurons•Axon-carrying dendrites have higher propensity to generate dendritic spikes•Input to axon-carrying dendrites elicits action potentials with lower threshold•Structure of hippocampal principal neurons mediates asymmetric input processing
Thome et al. find that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. These dendrites constitute a privileged channel for excitatory synaptic input, generating a major functional asymmetry in a subset of cortical neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25199704</pmid><doi>10.1016/j.neuron.2014.08.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2014-09, Vol.83 (6), p.1418-1430 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1635017896 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Action Potentials - physiology Animals Axons - physiology Axons - ultrastructure Brain Computer Simulation Dendrites - physiology Dendrites - ultrastructure Excitatory Postsynaptic Potentials - physiology Female Hippocampus - physiology Hippocampus - ultrastructure Immunohistochemistry Male Mice Mice, Inbred C57BL Mice, Transgenic Microscopy, Confocal Models, Neurological Morphology Neurons Organ Culture Techniques Patch-Clamp Techniques Pyramidal Cells - physiology Pyramidal Cells - ultrastructure Rats Rats, Wistar Rodents Software Synaptic Transmission - physiology |
title | Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axon-Carrying%20Dendrites%20Convey%20Privileged%20Synaptic%20Input%20in%20Hippocampal%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Thome,%20Christian&rft.date=2014-09-17&rft.volume=83&rft.issue=6&rft.spage=1418&rft.epage=1430&rft.pages=1418-1430&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.08.013&rft_dat=%3Cproquest_cross%3E1635017896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620026069&rft_id=info:pmid/25199704&rft_els_id=S0896627314006886&rfr_iscdi=true |