Long-Range Electron Transfer Triggers Mechanistic Differences between Iron(IV)-Oxo and Iron(IV)-Imido Oxidants
Nature often utilizes molecular oxygen for oxidation reactions through monoxygenases and dioxygenases. In many of these systems, a high-valent iron(IV)-oxo active species is found. In recent years, evidence has accumulated of possible iron(IV)-imido and iron(V)-nitrido intermediates in enzymatic...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2014-12, Vol.136 (49), p.17102-17115 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nature often utilizes molecular oxygen for oxidation reactions through monoxygenases and dioxygenases. In many of these systems, a high-valent iron(IV)-oxo active species is found. In recent years, evidence has accumulated of possible iron(IV)-imido and iron(V)-nitrido intermediates in enzymatic catalysis, although little is known about their activity. In this work, we report a detailed combined kinetics and computational study on the difference in reactivity and chemical properties of nonheme iron(IV)-oxo compared with iron(IV)-tosylimido. We show here that iron(IV)-tosylimido complex is much more reactive with sulfides than the corresponding iron(IV)-oxo complex; however, the reverse trend is obtained for hydrogen atom abstraction reactions. The latter proceed with a relatively small kinetic isotope effect of k H/k D = 7 for the iron(IV)-tosylimido complex. Moreover, a Hammett analysis of hydrogen atom abstraction from para-X-benzyl alcohol reveals a slope of close to zero for the iron(IV)-oxo, whereas a strong negative slope is found for the iron(IV)-tosylimido complex. These studies implicate dramatic changes in the reaction mechanisms and suggest a considerable charge transfer in the transition states. Density functional theory calculations were performed to support the experiments and confirm an initial long-range electron transfer for the iron(IV)-tosylimido complex with substrates, due to a substantially larger electron affinity compared with the iron(IV)-oxo species. As a consequence, it also reacts more efficiently in electrophilic addition reactions such as those with sulfides. By contrast, the long-range electron transfer for the iron(IV)-tosylimido complex results in a rate constant that is dependent on the π* xz → σ* z 2 excitation energy, which raises the hydrogen atom abstraction barrier above that found for the iron(IV)-oxo. On the other hand, sulfimidation has much earlier electron transfer steps with respect to sulfoxidation. All data has been analyzed and rationalized with valence bond models and thermochemical cycles. Our studies highlight the catalytic potential of iron(IV)-tosylimido complexes in chemistry and biology. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja508403w |