Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation

Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-12, Vol.141 (21), p.214112-214112
Hauptverfasser: Shin, Hyun Kyung, Choi, Bongsik, Talkner, Peter, Lee, Eok Kyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214112
container_issue 21
container_start_page 214112
container_title The Journal of chemical physics
container_volume 141
creator Shin, Hyun Kyung
Choi, Bongsik
Talkner, Peter
Lee, Eok Kyun
description Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
doi_str_mv 10.1063/1.4902409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1634726679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126491526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e9f98c4865efc3e5d86da333f604cc0030dd13b15bcf2865976ffaaa0e82072a3</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxq2KqrvQHvoCyBIXOISO_8SJuSEEFAm1l_Ycee1x8SqJFzsBbV-A165XLD1wmplPv_k0o4-QrwzOGSjxjZ1LDVyC_kCWDFpdNUrDAVkCcFZpBWpBDnNeAwBruPxEFryWLWNCLsnLj5gG09MnTHnO1IyxTLF0GXtfueD9nEMcaRjp9ByLMOC4E8qK7-fg8gUdcIhpS_082mmHms0mRWMfipmjf3DEZPrwFx01eTtspjgFS6_DmCcspgl7s9v6TD5602f8sq9H5PfN9a-r79X9z9u7q8v7yopGTxVqr1srW1WjtwJr1ypnhBBegbQWQIBzTKxYvbKeF0o3yntjDGDLoeFGHJHTV99y4-OMeeqGkC32vRmxvN0xJWTDlWp0QU_eoes4p_J57jjjSmpWc1Wos1fKpphzQt9tUhhM2nYMul06Hev26RT2eO84rwZ0_8m3OMQ_gZGMWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126491526</pqid></control><display><type>article</type><title>Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shin, Hyun Kyung ; Choi, Bongsik ; Talkner, Peter ; Lee, Eok Kyun</creator><creatorcontrib>Shin, Hyun Kyung ; Choi, Bongsik ; Talkner, Peter ; Lee, Eok Kyun</creatorcontrib><description>Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4902409</identifier><identifier>PMID: 25481134</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Asymptotic properties ; Brownian motion ; Molecular dynamics ; Self diffusion</subject><ispartof>The Journal of chemical physics, 2014-12, Vol.141 (21), p.214112-214112</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e9f98c4865efc3e5d86da333f604cc0030dd13b15bcf2865976ffaaa0e82072a3</citedby><cites>FETCH-LOGICAL-c379t-e9f98c4865efc3e5d86da333f604cc0030dd13b15bcf2865976ffaaa0e82072a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25481134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Hyun Kyung</creatorcontrib><creatorcontrib>Choi, Bongsik</creatorcontrib><creatorcontrib>Talkner, Peter</creatorcontrib><creatorcontrib>Lee, Eok Kyun</creatorcontrib><title>Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.</description><subject>Asymptotic properties</subject><subject>Brownian motion</subject><subject>Molecular dynamics</subject><subject>Self diffusion</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc9O3DAQxq2KqrvQHvoCyBIXOISO_8SJuSEEFAm1l_Ycee1x8SqJFzsBbV-A165XLD1wmplPv_k0o4-QrwzOGSjxjZ1LDVyC_kCWDFpdNUrDAVkCcFZpBWpBDnNeAwBruPxEFryWLWNCLsnLj5gG09MnTHnO1IyxTLF0GXtfueD9nEMcaRjp9ByLMOC4E8qK7-fg8gUdcIhpS_082mmHms0mRWMfipmjf3DEZPrwFx01eTtspjgFS6_DmCcspgl7s9v6TD5602f8sq9H5PfN9a-r79X9z9u7q8v7yopGTxVqr1srW1WjtwJr1ypnhBBegbQWQIBzTKxYvbKeF0o3yntjDGDLoeFGHJHTV99y4-OMeeqGkC32vRmxvN0xJWTDlWp0QU_eoes4p_J57jjjSmpWc1Wos1fKpphzQt9tUhhM2nYMul06Hev26RT2eO84rwZ0_8m3OMQ_gZGMWQ</recordid><startdate>20141207</startdate><enddate>20141207</enddate><creator>Shin, Hyun Kyung</creator><creator>Choi, Bongsik</creator><creator>Talkner, Peter</creator><creator>Lee, Eok Kyun</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20141207</creationdate><title>Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation</title><author>Shin, Hyun Kyung ; Choi, Bongsik ; Talkner, Peter ; Lee, Eok Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e9f98c4865efc3e5d86da333f604cc0030dd13b15bcf2865976ffaaa0e82072a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Brownian motion</topic><topic>Molecular dynamics</topic><topic>Self diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyun Kyung</creatorcontrib><creatorcontrib>Choi, Bongsik</creatorcontrib><creatorcontrib>Talkner, Peter</creatorcontrib><creatorcontrib>Lee, Eok Kyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyun Kyung</au><au>Choi, Bongsik</au><au>Talkner, Peter</au><au>Lee, Eok Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-12-07</date><risdate>2014</risdate><volume>141</volume><issue>21</issue><spage>214112</spage><epage>214112</epage><pages>214112-214112</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25481134</pmid><doi>10.1063/1.4902409</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-12, Vol.141 (21), p.214112-214112
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1634726679
source AIP Journals Complete; Alma/SFX Local Collection
subjects Asymptotic properties
Brownian motion
Molecular dynamics
Self diffusion
title Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20versus%20anomalous%20self-diffusion%20in%20two-dimensional%20fluids:%20memory%20function%20approach%20and%20generalized%20asymptotic%20Einstein%20relation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Shin,%20Hyun%20Kyung&rft.date=2014-12-07&rft.volume=141&rft.issue=21&rft.spage=214112&rft.epage=214112&rft.pages=214112-214112&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4902409&rft_dat=%3Cproquest_cross%3E2126491526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126491526&rft_id=info:pmid/25481134&rfr_iscdi=true