An information theoretic approach to network tomography

In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied economics letters 2015-01, Vol.22 (1), p.1-6
Hauptverfasser: Tam Cho, Wendy K., Judge, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 1
container_title Applied economics letters
container_volume 22
creator Tam Cho, Wendy K.
Judge, George
description In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.
doi_str_mv 10.1080/13504851.2013.866199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1634461821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498169701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</originalsourceid><addsrcrecordid>eNp9kD1PwzAURSMEEqXwDxgisbCk-NnOiz2hquJLqsQCs-W4Dk1J4mCnQv33OEpZGJjeHc69ejpJcg1kAUSQO2A54SKHBSXAFgIRpDxJZsARM04lnMYckWxkzpOLEHaEEBQSZ0mx7NK6q5xv9VC7Lh221nk71CbVfe-dNtt0cGlnh2_nP2Ns3YfX_fZwmZxVugn26njnyfvjw9vqOVu_Pr2sluvM5IQOmSmEBJoXpdYIFKpCUsql1QwBpEYrTGUF5miIEaXZ5CUg4YZJxBJtgcDmye20G5_52tswqLYOxjaN7qzbBwXIOEcQdERv_qA7t_dd_C5SNGdIuRgpPlHGuxC8rVTv61b7gwKiRpvq16YabarJZqzdT7WjrKij2ahBHxrnK687UwfF_l34AbXOebo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625362481</pqid></control><display><type>article</type><title>An information theoretic approach to network tomography</title><source>Business Source Complete</source><creator>Tam Cho, Wendy K. ; Judge, George</creator><creatorcontrib>Tam Cho, Wendy K. ; Judge, George</creatorcontrib><description>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</description><identifier>ISSN: 1350-4851</identifier><identifier>EISSN: 1466-4291</identifier><identifier>DOI: 10.1080/13504851.2013.866199</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Cressie-Read divergence ; Economic analysis ; Information ; information theoretic methods ; Information theory ; inverse problem ; Inverse problems ; link measurements ; Network flow problem ; network tomography ; Networks ; Panel data ; Studies ; Traffic ; Traffic flow ; Transport ; Transportation problem (Operations research)</subject><ispartof>Applied economics letters, 2015-01, Vol.22 (1), p.1-6</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Group 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</citedby><cites>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tam Cho, Wendy K.</creatorcontrib><creatorcontrib>Judge, George</creatorcontrib><title>An information theoretic approach to network tomography</title><title>Applied economics letters</title><description>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</description><subject>Cressie-Read divergence</subject><subject>Economic analysis</subject><subject>Information</subject><subject>information theoretic methods</subject><subject>Information theory</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>link measurements</subject><subject>Network flow problem</subject><subject>network tomography</subject><subject>Networks</subject><subject>Panel data</subject><subject>Studies</subject><subject>Traffic</subject><subject>Traffic flow</subject><subject>Transport</subject><subject>Transportation problem (Operations research)</subject><issn>1350-4851</issn><issn>1466-4291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURSMEEqXwDxgisbCk-NnOiz2hquJLqsQCs-W4Dk1J4mCnQv33OEpZGJjeHc69ejpJcg1kAUSQO2A54SKHBSXAFgIRpDxJZsARM04lnMYckWxkzpOLEHaEEBQSZ0mx7NK6q5xv9VC7Lh221nk71CbVfe-dNtt0cGlnh2_nP2Ns3YfX_fZwmZxVugn26njnyfvjw9vqOVu_Pr2sluvM5IQOmSmEBJoXpdYIFKpCUsql1QwBpEYrTGUF5miIEaXZ5CUg4YZJxBJtgcDmye20G5_52tswqLYOxjaN7qzbBwXIOEcQdERv_qA7t_dd_C5SNGdIuRgpPlHGuxC8rVTv61b7gwKiRpvq16YabarJZqzdT7WjrKij2ahBHxrnK687UwfF_l34AbXOebo</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Tam Cho, Wendy K.</creator><creator>Judge, George</creator><general>Routledge</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150102</creationdate><title>An information theoretic approach to network tomography</title><author>Tam Cho, Wendy K. ; Judge, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cressie-Read divergence</topic><topic>Economic analysis</topic><topic>Information</topic><topic>information theoretic methods</topic><topic>Information theory</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>link measurements</topic><topic>Network flow problem</topic><topic>network tomography</topic><topic>Networks</topic><topic>Panel data</topic><topic>Studies</topic><topic>Traffic</topic><topic>Traffic flow</topic><topic>Transport</topic><topic>Transportation problem (Operations research)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam Cho, Wendy K.</creatorcontrib><creatorcontrib>Judge, George</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam Cho, Wendy K.</au><au>Judge, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An information theoretic approach to network tomography</atitle><jtitle>Applied economics letters</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1350-4851</issn><eissn>1466-4291</eissn><abstract>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13504851.2013.866199</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4851
ispartof Applied economics letters, 2015-01, Vol.22 (1), p.1-6
issn 1350-4851
1466-4291
language eng
recordid cdi_proquest_miscellaneous_1634461821
source Business Source Complete
subjects Cressie-Read divergence
Economic analysis
Information
information theoretic methods
Information theory
inverse problem
Inverse problems
link measurements
Network flow problem
network tomography
Networks
Panel data
Studies
Traffic
Traffic flow
Transport
Transportation problem (Operations research)
title An information theoretic approach to network tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20information%20theoretic%20approach%20to%20network%20tomography&rft.jtitle=Applied%20economics%20letters&rft.au=Tam%20Cho,%20Wendy%20K.&rft.date=2015-01-02&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1350-4851&rft.eissn=1466-4291&rft_id=info:doi/10.1080/13504851.2013.866199&rft_dat=%3Cproquest_cross%3E3498169701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625362481&rft_id=info:pmid/&rfr_iscdi=true