An information theoretic approach to network tomography
In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how,...
Gespeichert in:
Veröffentlicht in: | Applied economics letters 2015-01, Vol.22 (1), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Applied economics letters |
container_volume | 22 |
creator | Tam Cho, Wendy K. Judge, George |
description | In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs. |
doi_str_mv | 10.1080/13504851.2013.866199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1634461821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498169701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</originalsourceid><addsrcrecordid>eNp9kD1PwzAURSMEEqXwDxgisbCk-NnOiz2hquJLqsQCs-W4Dk1J4mCnQv33OEpZGJjeHc69ejpJcg1kAUSQO2A54SKHBSXAFgIRpDxJZsARM04lnMYckWxkzpOLEHaEEBQSZ0mx7NK6q5xv9VC7Lh221nk71CbVfe-dNtt0cGlnh2_nP2Ns3YfX_fZwmZxVugn26njnyfvjw9vqOVu_Pr2sluvM5IQOmSmEBJoXpdYIFKpCUsql1QwBpEYrTGUF5miIEaXZ5CUg4YZJxBJtgcDmye20G5_52tswqLYOxjaN7qzbBwXIOEcQdERv_qA7t_dd_C5SNGdIuRgpPlHGuxC8rVTv61b7gwKiRpvq16YabarJZqzdT7WjrKij2ahBHxrnK687UwfF_l34AbXOebo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625362481</pqid></control><display><type>article</type><title>An information theoretic approach to network tomography</title><source>Business Source Complete</source><creator>Tam Cho, Wendy K. ; Judge, George</creator><creatorcontrib>Tam Cho, Wendy K. ; Judge, George</creatorcontrib><description>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</description><identifier>ISSN: 1350-4851</identifier><identifier>EISSN: 1466-4291</identifier><identifier>DOI: 10.1080/13504851.2013.866199</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Cressie-Read divergence ; Economic analysis ; Information ; information theoretic methods ; Information theory ; inverse problem ; Inverse problems ; link measurements ; Network flow problem ; network tomography ; Networks ; Panel data ; Studies ; Traffic ; Traffic flow ; Transport ; Transportation problem (Operations research)</subject><ispartof>Applied economics letters, 2015-01, Vol.22 (1), p.1-6</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Group 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</citedby><cites>FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tam Cho, Wendy K.</creatorcontrib><creatorcontrib>Judge, George</creatorcontrib><title>An information theoretic approach to network tomography</title><title>Applied economics letters</title><description>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</description><subject>Cressie-Read divergence</subject><subject>Economic analysis</subject><subject>Information</subject><subject>information theoretic methods</subject><subject>Information theory</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>link measurements</subject><subject>Network flow problem</subject><subject>network tomography</subject><subject>Networks</subject><subject>Panel data</subject><subject>Studies</subject><subject>Traffic</subject><subject>Traffic flow</subject><subject>Transport</subject><subject>Transportation problem (Operations research)</subject><issn>1350-4851</issn><issn>1466-4291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURSMEEqXwDxgisbCk-NnOiz2hquJLqsQCs-W4Dk1J4mCnQv33OEpZGJjeHc69ejpJcg1kAUSQO2A54SKHBSXAFgIRpDxJZsARM04lnMYckWxkzpOLEHaEEBQSZ0mx7NK6q5xv9VC7Lh221nk71CbVfe-dNtt0cGlnh2_nP2Ns3YfX_fZwmZxVugn26njnyfvjw9vqOVu_Pr2sluvM5IQOmSmEBJoXpdYIFKpCUsql1QwBpEYrTGUF5miIEaXZ5CUg4YZJxBJtgcDmye20G5_52tswqLYOxjaN7qzbBwXIOEcQdERv_qA7t_dd_C5SNGdIuRgpPlHGuxC8rVTv61b7gwKiRpvq16YabarJZqzdT7WjrKij2ahBHxrnK687UwfF_l34AbXOebo</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Tam Cho, Wendy K.</creator><creator>Judge, George</creator><general>Routledge</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150102</creationdate><title>An information theoretic approach to network tomography</title><author>Tam Cho, Wendy K. ; Judge, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-c7891257baa6121f792249ea36119a6e8cfe8656c0c8bcd5b1604c3966b6e7613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cressie-Read divergence</topic><topic>Economic analysis</topic><topic>Information</topic><topic>information theoretic methods</topic><topic>Information theory</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>link measurements</topic><topic>Network flow problem</topic><topic>network tomography</topic><topic>Networks</topic><topic>Panel data</topic><topic>Studies</topic><topic>Traffic</topic><topic>Traffic flow</topic><topic>Transport</topic><topic>Transportation problem (Operations research)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam Cho, Wendy K.</creatorcontrib><creatorcontrib>Judge, George</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam Cho, Wendy K.</au><au>Judge, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An information theoretic approach to network tomography</atitle><jtitle>Applied economics letters</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1350-4851</issn><eissn>1466-4291</eissn><abstract>In this article, we formulate an information theoretic approach to information recovery for a network flow transportation problem as an ill-posed inverse problem and use nonparametric information theoretic methods to recover the unknown adaptive-intelligent behaviour traffic flows. We indicate how, in general, information theoretic methods may provide a solution to the ill-posed inverse information flow problems, when a function must be inferred from insufficient sample information. As an application, we examine a data set which comprised traffic volumes at Bell Labs.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13504851.2013.866199</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4851 |
ispartof | Applied economics letters, 2015-01, Vol.22 (1), p.1-6 |
issn | 1350-4851 1466-4291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1634461821 |
source | Business Source Complete |
subjects | Cressie-Read divergence Economic analysis Information information theoretic methods Information theory inverse problem Inverse problems link measurements Network flow problem network tomography Networks Panel data Studies Traffic Traffic flow Transport Transportation problem (Operations research) |
title | An information theoretic approach to network tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20information%20theoretic%20approach%20to%20network%20tomography&rft.jtitle=Applied%20economics%20letters&rft.au=Tam%20Cho,%20Wendy%20K.&rft.date=2015-01-02&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1350-4851&rft.eissn=1466-4291&rft_id=info:doi/10.1080/13504851.2013.866199&rft_dat=%3Cproquest_cross%3E3498169701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625362481&rft_id=info:pmid/&rfr_iscdi=true |