Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex

: Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5‐s intervals in the striatum of chloral hydrate‐anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser‐induced fluorescence. Application of a single 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 1998-02, Vol.70 (2), p.617-625
Hauptverfasser: Lada, Mark W., Vickroy, Thomas W., Kennedy, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 2
container_start_page 617
container_title Journal of neurochemistry
container_volume 70
creator Lada, Mark W.
Vickroy, Thomas W.
Kennedy, Robert T.
description : Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5‐s intervals in the striatum of chloral hydrate‐anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser‐induced fluorescence. Application of a single 10‐s train of depolarizing pulses to the prefrontal cortex caused a rapid increase in Glu and Asp concentrations (200–300% of basal value), which returned to basal level within 60 s. The stimulated rise in Glu and Asp concentrations was blocked completely by 2 µM tetrodotoxin or depletion of extracellular Ca2+, suggesting a neuronal origin of the Glu and Asp. Infusion of the Glu transport inhibitor l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid (200 µM) increased resting Glu and Asp levels by 300–500% without altering electrically stimulated changes in Glu and Asp concentration. Stimulated Glu and Asp concentration changes were suppressed by 91 and 73%, respectively, by the metabotropic Glu receptor agonist (1S,3R)‐1‐aminocyclopentane‐trans‐1,3‐dicarboxylate (200 µM). This effect was blocked by the metabotropic Glu receptor antagonist (RS)‐α‐methylcarboxyphenylglycine (MCPG; 200 µM). MCPG alone produced no effect on electrically stimulated changes in Glu and Asp levels; however, in the presence of l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid, MCPG produced a five‐ to sixfold increase in stimulated overflow. Based on these results, it is concluded that release of Glu and Asp from corticostriatal neurons can be inhibited by activation of metabotropic Glu autoreceptors, which may be an important determinant of excitatory transmission at striatal synapses.
doi_str_mv 10.1046/j.1471-4159.1998.70020617.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16325838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16325838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5567-d758a2fe7dc80a16ac01e2ac69f31b90df4025dd5642d65bc6507bf1917002163</originalsourceid><addsrcrecordid>eNqVUctu1DAUjRCoDIVPQLIEYpdgJ7GTiFU1TEtRH6gFtpbHvhk8cuJgO-10xyf0r_offAkOMx2xZWXde8499_ieJHlDcEZwyd6vM1JWJC0JbTLSNHVWYZxjRqps8ySZ7bGnySz287TAZf48eeH9GmPCSkYOkoOmpAWldJY8LG60gl4Caq1DFzA62wuDLp1e6R6JXqFzCGJpg7ODlugKJAzBut-_7s9BaRFAxd5qNCJo2yPbosUmOCHBmNhz6MSMQXSR9lfqyA_ChamK2lcioOvgosbYodMefdc3Fh1bY-yt7ldoYUBGVEYz10F3_2wIPwB9cdBGpyGic-sCbF4mz1phPLzavYfJt-PF1_mn9Ozy5HR-dJZKSlmVqorWIm-hUrLGgjAhMYFcSNa0BVk2WLUlzqlSlJW5YnQpGcXVsiUNmW5MWHGYvNvqDs7-HMEH3mk_fVf0YEfPIyWndVFH4octUTrrfbTLB6c74e44wXyKka_5FBWfouJTjPwxRr6J0693a8ZlB2o_u8st4m93uPDxRK0TvdR-T8tJUZOiibSPW9qtNnD3Pw7454v5Y1X8Abgtv0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16325838</pqid></control><display><type>article</type><title>Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Lada, Mark W. ; Vickroy, Thomas W. ; Kennedy, Robert T.</creator><creatorcontrib>Lada, Mark W. ; Vickroy, Thomas W. ; Kennedy, Robert T.</creatorcontrib><description>: Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5‐s intervals in the striatum of chloral hydrate‐anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser‐induced fluorescence. Application of a single 10‐s train of depolarizing pulses to the prefrontal cortex caused a rapid increase in Glu and Asp concentrations (200–300% of basal value), which returned to basal level within 60 s. The stimulated rise in Glu and Asp concentrations was blocked completely by 2 µM tetrodotoxin or depletion of extracellular Ca2+, suggesting a neuronal origin of the Glu and Asp. Infusion of the Glu transport inhibitor l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid (200 µM) increased resting Glu and Asp levels by 300–500% without altering electrically stimulated changes in Glu and Asp concentration. Stimulated Glu and Asp concentration changes were suppressed by 91 and 73%, respectively, by the metabotropic Glu receptor agonist (1S,3R)‐1‐aminocyclopentane‐trans‐1,3‐dicarboxylate (200 µM). This effect was blocked by the metabotropic Glu receptor antagonist (RS)‐α‐methylcarboxyphenylglycine (MCPG; 200 µM). MCPG alone produced no effect on electrically stimulated changes in Glu and Asp levels; however, in the presence of l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid, MCPG produced a five‐ to sixfold increase in stimulated overflow. Based on these results, it is concluded that release of Glu and Asp from corticostriatal neurons can be inhibited by activation of metabotropic Glu autoreceptors, which may be an important determinant of excitatory transmission at striatal synapses.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.1998.70020617.x</identifier><identifier>PMID: 9453555</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Aspartate ; Aspartic Acid - metabolism ; Autoreceptor ; Benzoates - pharmacology ; Biological and medical sciences ; Calcium - metabolism ; Calcium - pharmacology ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Corpus Striatum - drug effects ; Corpus Striatum - physiology ; Cycloleucine - analogs &amp; derivatives ; Cycloleucine - pharmacology ; Dicarboxylic Acids - pharmacology ; Egtazic Acid - pharmacology ; Electric Stimulation ; Excitatory Amino Acid Antagonists - pharmacology ; Extracellular Space - metabolism ; Fundamental and applied biological sciences. Psychology ; Glutamate ; Glutamic Acid - metabolism ; Glycine - analogs &amp; derivatives ; Glycine - pharmacology ; Male ; Metabotropic receptor ; Microdialysis ; Neurons - drug effects ; Neurons - physiology ; Neurotransmitter Uptake Inhibitors - pharmacology ; Overflow ; Prefrontal Cortex - physiology ; Pyrrolidines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate - physiology ; Tetrodotoxin - pharmacology ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 1998-02, Vol.70 (2), p.617-625</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5567-d758a2fe7dc80a16ac01e2ac69f31b90df4025dd5642d65bc6507bf1917002163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.1998.70020617.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.1998.70020617.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2138139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9453555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lada, Mark W.</creatorcontrib><creatorcontrib>Vickroy, Thomas W.</creatorcontrib><creatorcontrib>Kennedy, Robert T.</creatorcontrib><title>Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>: Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5‐s intervals in the striatum of chloral hydrate‐anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser‐induced fluorescence. Application of a single 10‐s train of depolarizing pulses to the prefrontal cortex caused a rapid increase in Glu and Asp concentrations (200–300% of basal value), which returned to basal level within 60 s. The stimulated rise in Glu and Asp concentrations was blocked completely by 2 µM tetrodotoxin or depletion of extracellular Ca2+, suggesting a neuronal origin of the Glu and Asp. Infusion of the Glu transport inhibitor l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid (200 µM) increased resting Glu and Asp levels by 300–500% without altering electrically stimulated changes in Glu and Asp concentration. Stimulated Glu and Asp concentration changes were suppressed by 91 and 73%, respectively, by the metabotropic Glu receptor agonist (1S,3R)‐1‐aminocyclopentane‐trans‐1,3‐dicarboxylate (200 µM). This effect was blocked by the metabotropic Glu receptor antagonist (RS)‐α‐methylcarboxyphenylglycine (MCPG; 200 µM). MCPG alone produced no effect on electrically stimulated changes in Glu and Asp levels; however, in the presence of l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid, MCPG produced a five‐ to sixfold increase in stimulated overflow. Based on these results, it is concluded that release of Glu and Asp from corticostriatal neurons can be inhibited by activation of metabotropic Glu autoreceptors, which may be an important determinant of excitatory transmission at striatal synapses.</description><subject>Animals</subject><subject>Aspartate</subject><subject>Aspartic Acid - metabolism</subject><subject>Autoreceptor</subject><subject>Benzoates - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium - pharmacology</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - physiology</subject><subject>Cycloleucine - analogs &amp; derivatives</subject><subject>Cycloleucine - pharmacology</subject><subject>Dicarboxylic Acids - pharmacology</subject><subject>Egtazic Acid - pharmacology</subject><subject>Electric Stimulation</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Extracellular Space - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - pharmacology</subject><subject>Male</subject><subject>Metabotropic receptor</subject><subject>Microdialysis</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurotransmitter Uptake Inhibitors - pharmacology</subject><subject>Overflow</subject><subject>Prefrontal Cortex - physiology</subject><subject>Pyrrolidines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Metabotropic Glutamate - physiology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVUctu1DAUjRCoDIVPQLIEYpdgJ7GTiFU1TEtRH6gFtpbHvhk8cuJgO-10xyf0r_offAkOMx2xZWXde8499_ieJHlDcEZwyd6vM1JWJC0JbTLSNHVWYZxjRqps8ySZ7bGnySz287TAZf48eeH9GmPCSkYOkoOmpAWldJY8LG60gl4Caq1DFzA62wuDLp1e6R6JXqFzCGJpg7ODlugKJAzBut-_7s9BaRFAxd5qNCJo2yPbosUmOCHBmNhz6MSMQXSR9lfqyA_ChamK2lcioOvgosbYodMefdc3Fh1bY-yt7ldoYUBGVEYz10F3_2wIPwB9cdBGpyGic-sCbF4mz1phPLzavYfJt-PF1_mn9Ozy5HR-dJZKSlmVqorWIm-hUrLGgjAhMYFcSNa0BVk2WLUlzqlSlJW5YnQpGcXVsiUNmW5MWHGYvNvqDs7-HMEH3mk_fVf0YEfPIyWndVFH4octUTrrfbTLB6c74e44wXyKka_5FBWfouJTjPwxRr6J0693a8ZlB2o_u8st4m93uPDxRK0TvdR-T8tJUZOiibSPW9qtNnD3Pw7454v5Y1X8Abgtv0o</recordid><startdate>199802</startdate><enddate>199802</enddate><creator>Lada, Mark W.</creator><creator>Vickroy, Thomas W.</creator><creator>Kennedy, Robert T.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>199802</creationdate><title>Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex</title><author>Lada, Mark W. ; Vickroy, Thomas W. ; Kennedy, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5567-d758a2fe7dc80a16ac01e2ac69f31b90df4025dd5642d65bc6507bf1917002163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Aspartate</topic><topic>Aspartic Acid - metabolism</topic><topic>Autoreceptor</topic><topic>Benzoates - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium - pharmacology</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - physiology</topic><topic>Cycloleucine - analogs &amp; derivatives</topic><topic>Cycloleucine - pharmacology</topic><topic>Dicarboxylic Acids - pharmacology</topic><topic>Egtazic Acid - pharmacology</topic><topic>Electric Stimulation</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Extracellular Space - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - pharmacology</topic><topic>Male</topic><topic>Metabotropic receptor</topic><topic>Microdialysis</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurotransmitter Uptake Inhibitors - pharmacology</topic><topic>Overflow</topic><topic>Prefrontal Cortex - physiology</topic><topic>Pyrrolidines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Metabotropic Glutamate - physiology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lada, Mark W.</creatorcontrib><creatorcontrib>Vickroy, Thomas W.</creatorcontrib><creatorcontrib>Kennedy, Robert T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lada, Mark W.</au><au>Vickroy, Thomas W.</au><au>Kennedy, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>1998-02</date><risdate>1998</risdate><volume>70</volume><issue>2</issue><spage>617</spage><epage>625</epage><pages>617-625</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>: Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5‐s intervals in the striatum of chloral hydrate‐anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser‐induced fluorescence. Application of a single 10‐s train of depolarizing pulses to the prefrontal cortex caused a rapid increase in Glu and Asp concentrations (200–300% of basal value), which returned to basal level within 60 s. The stimulated rise in Glu and Asp concentrations was blocked completely by 2 µM tetrodotoxin or depletion of extracellular Ca2+, suggesting a neuronal origin of the Glu and Asp. Infusion of the Glu transport inhibitor l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid (200 µM) increased resting Glu and Asp levels by 300–500% without altering electrically stimulated changes in Glu and Asp concentration. Stimulated Glu and Asp concentration changes were suppressed by 91 and 73%, respectively, by the metabotropic Glu receptor agonist (1S,3R)‐1‐aminocyclopentane‐trans‐1,3‐dicarboxylate (200 µM). This effect was blocked by the metabotropic Glu receptor antagonist (RS)‐α‐methylcarboxyphenylglycine (MCPG; 200 µM). MCPG alone produced no effect on electrically stimulated changes in Glu and Asp levels; however, in the presence of l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid, MCPG produced a five‐ to sixfold increase in stimulated overflow. Based on these results, it is concluded that release of Glu and Asp from corticostriatal neurons can be inhibited by activation of metabotropic Glu autoreceptors, which may be an important determinant of excitatory transmission at striatal synapses.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>9453555</pmid><doi>10.1046/j.1471-4159.1998.70020617.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 1998-02, Vol.70 (2), p.617-625
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_16325838
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects Animals
Aspartate
Aspartic Acid - metabolism
Autoreceptor
Benzoates - pharmacology
Biological and medical sciences
Calcium - metabolism
Calcium - pharmacology
Central nervous system
Central neurotransmission. Neuromudulation. Pathways and receptors
Corpus Striatum - drug effects
Corpus Striatum - physiology
Cycloleucine - analogs & derivatives
Cycloleucine - pharmacology
Dicarboxylic Acids - pharmacology
Egtazic Acid - pharmacology
Electric Stimulation
Excitatory Amino Acid Antagonists - pharmacology
Extracellular Space - metabolism
Fundamental and applied biological sciences. Psychology
Glutamate
Glutamic Acid - metabolism
Glycine - analogs & derivatives
Glycine - pharmacology
Male
Metabotropic receptor
Microdialysis
Neurons - drug effects
Neurons - physiology
Neurotransmitter Uptake Inhibitors - pharmacology
Overflow
Prefrontal Cortex - physiology
Pyrrolidines - pharmacology
Rats
Rats, Sprague-Dawley
Receptors, Metabotropic Glutamate - physiology
Tetrodotoxin - pharmacology
Time Factors
Vertebrates: nervous system and sense organs
title Evidence for Neuronal Origin and Metabotropic Receptor‐Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Neuronal%20Origin%20and%20Metabotropic%20Receptor%E2%80%90Mediated%20Regulation%20of%20Extracellular%20Glutamate%20and%20Aspartate%20in%20Rat%20Striatum%20In%20Vivo%20Following%20Electrical%20Stimulation%20of%20the%20Prefrontal%20Cortex&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Lada,%20Mark%20W.&rft.date=1998-02&rft.volume=70&rft.issue=2&rft.spage=617&rft.epage=625&rft.pages=617-625&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.1998.70020617.x&rft_dat=%3Cproquest_cross%3E16325838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16325838&rft_id=info:pmid/9453555&rfr_iscdi=true