Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging

Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2014-12, Vol.33 (12), p.2323-2331
Hauptverfasser: Chen, Chen, Tian, Fenghua, Liu, Hanli, Huang, Junzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2331
container_issue 12
container_start_page 2323
container_title IEEE transactions on medical imaging
container_volume 33
creator Chen, Chen
Tian, Fenghua
Liu, Hanli
Huang, Junzhou
description Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. For linearized DOT problems, sparsity regularization has achieved promising results over conventional Tikhonov regularization in recent experimental research. As extensions to standard sparsity, it is widely known that structured sparsity based methods are often superior in terms of reconstruction accuracy, when the data follows some structures. In this paper, we exploit the structured sparsity of diffuse optical images. Based on the functional specialization of the brain, it is observed that the in vivo absorption changes caused by a specific brain function would be clustered in certain region(s) and not randomly distributed. Thus, a new algorithm is proposed for this clustered sparsity reconstruction (CSR). Results of numerical simulations and phantom experiments have demonstrated the superiority of the proposed method over the state-of-the-art methods. An example from human in vivo measurements further confirmed the advantages of the proposed CSR method.
doi_str_mv 10.1109/TMI.2014.2338214
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629976546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6858051</ieee_id><sourcerecordid>3512703741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-da4be4dc8bc1e4b65ec1e6b649f5d5d9b61fbaeed4fff4ca07681007329348c73</originalsourceid><addsrcrecordid>eNqNkT1PHDEQhq2ICA5CHwkJrURDs5fx53pLuEByEhFFLlG6ldc7Poz2C3u3uH8fo7tQpKIajeZ532IeQj5TWFIK5ZfNj_WSARVLxrlmVHwgCyqlzpkUf47IAlihcwDFTshpjM-QSAnlMTlhEqTkGhbk91fv3Bwxexwnb02bbYZu2AYzPu2yu_7J9BabrN5lq3aOE4a0_BxNiH7aZW4I2f3c28kPfQreBuP7bN2Zre-3n8hHZ9qI54d5Rn7d321W3_OHx2_r1c1DbgXlU94YUaNorK4tRVEriWmqWonSyUY2Za2oqw1iI5xzwhoolKYABWclF9oW_Ixc73vHMLzMGKeq89Fi25oehzlWVEkqQBeFfgcqIH2Iqfe0srIslBQqoVf_oc_DHNI_9hRVALxMFOwpG4YYA7pqDL4zYVdRqF5NVslk9WqyOphMkctD8Vx32LwF_qlLwMUe8Ij4dlZaapCU_wUE9aDb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629160039</pqid></control><display><type>article</type><title>Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging</title><source>IEEE Electronic Library Online</source><creator>Chen, Chen ; Tian, Fenghua ; Liu, Hanli ; Huang, Junzhou</creator><creatorcontrib>Chen, Chen ; Tian, Fenghua ; Liu, Hanli ; Huang, Junzhou</creatorcontrib><description>Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. For linearized DOT problems, sparsity regularization has achieved promising results over conventional Tikhonov regularization in recent experimental research. As extensions to standard sparsity, it is widely known that structured sparsity based methods are often superior in terms of reconstruction accuracy, when the data follows some structures. In this paper, we exploit the structured sparsity of diffuse optical images. Based on the functional specialization of the brain, it is observed that the in vivo absorption changes caused by a specific brain function would be clustered in certain region(s) and not randomly distributed. Thus, a new algorithm is proposed for this clustered sparsity reconstruction (CSR). Results of numerical simulations and phantom experiments have demonstrated the superiority of the proposed method over the state-of-the-art methods. An example from human in vivo measurements further confirmed the advantages of the proposed CSR method.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2338214</identifier><identifier>PMID: 25055380</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; Algorithms ; Biomedical materials ; Biomedical optical imaging ; Brain ; Brain - anatomy &amp; histology ; Brain - physiology ; Clustered sparsity ; Clustering ; Computer Simulation ; diffuse optical tomography (DOT) ; Diffusion ; functional brain imaging ; Functional Neuroimaging - methods ; Humans ; Image reconstruction ; Mathematical models ; Noise ; Optical imaging ; Phantoms, Imaging ; Reconstruction ; Regularization ; Reproducibility of Results ; Sparsity ; structured sparsity ; Surgical implants ; Tomography, Optical - methods ; US Department of Transportation</subject><ispartof>IEEE transactions on medical imaging, 2014-12, Vol.33 (12), p.2323-2331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-da4be4dc8bc1e4b65ec1e6b649f5d5d9b61fbaeed4fff4ca07681007329348c73</citedby><cites>FETCH-LOGICAL-c413t-da4be4dc8bc1e4b65ec1e6b649f5d5d9b61fbaeed4fff4ca07681007329348c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6858051$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6858051$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25055380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Tian, Fenghua</creatorcontrib><creatorcontrib>Liu, Hanli</creatorcontrib><creatorcontrib>Huang, Junzhou</creatorcontrib><title>Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. For linearized DOT problems, sparsity regularization has achieved promising results over conventional Tikhonov regularization in recent experimental research. As extensions to standard sparsity, it is widely known that structured sparsity based methods are often superior in terms of reconstruction accuracy, when the data follows some structures. In this paper, we exploit the structured sparsity of diffuse optical images. Based on the functional specialization of the brain, it is observed that the in vivo absorption changes caused by a specific brain function would be clustered in certain region(s) and not randomly distributed. Thus, a new algorithm is proposed for this clustered sparsity reconstruction (CSR). Results of numerical simulations and phantom experiments have demonstrated the superiority of the proposed method over the state-of-the-art methods. An example from human in vivo measurements further confirmed the advantages of the proposed CSR method.</description><subject>Absorption</subject><subject>Algorithms</subject><subject>Biomedical materials</subject><subject>Biomedical optical imaging</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Clustered sparsity</subject><subject>Clustering</subject><subject>Computer Simulation</subject><subject>diffuse optical tomography (DOT)</subject><subject>Diffusion</subject><subject>functional brain imaging</subject><subject>Functional Neuroimaging - methods</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Optical imaging</subject><subject>Phantoms, Imaging</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>Reproducibility of Results</subject><subject>Sparsity</subject><subject>structured sparsity</subject><subject>Surgical implants</subject><subject>Tomography, Optical - methods</subject><subject>US Department of Transportation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkT1PHDEQhq2ICA5CHwkJrURDs5fx53pLuEByEhFFLlG6ldc7Poz2C3u3uH8fo7tQpKIajeZ532IeQj5TWFIK5ZfNj_WSARVLxrlmVHwgCyqlzpkUf47IAlihcwDFTshpjM-QSAnlMTlhEqTkGhbk91fv3Bwxexwnb02bbYZu2AYzPu2yu_7J9BabrN5lq3aOE4a0_BxNiH7aZW4I2f3c28kPfQreBuP7bN2Zre-3n8hHZ9qI54d5Rn7d321W3_OHx2_r1c1DbgXlU94YUaNorK4tRVEriWmqWonSyUY2Za2oqw1iI5xzwhoolKYABWclF9oW_Ixc73vHMLzMGKeq89Fi25oehzlWVEkqQBeFfgcqIH2Iqfe0srIslBQqoVf_oc_DHNI_9hRVALxMFOwpG4YYA7pqDL4zYVdRqF5NVslk9WqyOphMkctD8Vx32LwF_qlLwMUe8Ij4dlZaapCU_wUE9aDb</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Chen, Chen</creator><creator>Tian, Fenghua</creator><creator>Liu, Hanli</creator><creator>Huang, Junzhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201412</creationdate><title>Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging</title><author>Chen, Chen ; Tian, Fenghua ; Liu, Hanli ; Huang, Junzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-da4be4dc8bc1e4b65ec1e6b649f5d5d9b61fbaeed4fff4ca07681007329348c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption</topic><topic>Algorithms</topic><topic>Biomedical materials</topic><topic>Biomedical optical imaging</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Clustered sparsity</topic><topic>Clustering</topic><topic>Computer Simulation</topic><topic>diffuse optical tomography (DOT)</topic><topic>Diffusion</topic><topic>functional brain imaging</topic><topic>Functional Neuroimaging - methods</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Optical imaging</topic><topic>Phantoms, Imaging</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>Reproducibility of Results</topic><topic>Sparsity</topic><topic>structured sparsity</topic><topic>Surgical implants</topic><topic>Tomography, Optical - methods</topic><topic>US Department of Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Tian, Fenghua</creatorcontrib><creatorcontrib>Liu, Hanli</creatorcontrib><creatorcontrib>Huang, Junzhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Chen</au><au>Tian, Fenghua</au><au>Liu, Hanli</au><au>Huang, Junzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2014-12</date><risdate>2014</risdate><volume>33</volume><issue>12</issue><spage>2323</spage><epage>2331</epage><pages>2323-2331</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. For linearized DOT problems, sparsity regularization has achieved promising results over conventional Tikhonov regularization in recent experimental research. As extensions to standard sparsity, it is widely known that structured sparsity based methods are often superior in terms of reconstruction accuracy, when the data follows some structures. In this paper, we exploit the structured sparsity of diffuse optical images. Based on the functional specialization of the brain, it is observed that the in vivo absorption changes caused by a specific brain function would be clustered in certain region(s) and not randomly distributed. Thus, a new algorithm is proposed for this clustered sparsity reconstruction (CSR). Results of numerical simulations and phantom experiments have demonstrated the superiority of the proposed method over the state-of-the-art methods. An example from human in vivo measurements further confirmed the advantages of the proposed CSR method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25055380</pmid><doi>10.1109/TMI.2014.2338214</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2014-12, Vol.33 (12), p.2323-2331
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1629976546
source IEEE Electronic Library Online
subjects Absorption
Algorithms
Biomedical materials
Biomedical optical imaging
Brain
Brain - anatomy & histology
Brain - physiology
Clustered sparsity
Clustering
Computer Simulation
diffuse optical tomography (DOT)
Diffusion
functional brain imaging
Functional Neuroimaging - methods
Humans
Image reconstruction
Mathematical models
Noise
Optical imaging
Phantoms, Imaging
Reconstruction
Regularization
Reproducibility of Results
Sparsity
structured sparsity
Surgical implants
Tomography, Optical - methods
US Department of Transportation
title Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffuse%20Optical%20Tomography%20Enhanced%20by%20Clustered%20Sparsity%20for%20Functional%20Brain%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chen,%20Chen&rft.date=2014-12&rft.volume=33&rft.issue=12&rft.spage=2323&rft.epage=2331&rft.pages=2323-2331&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2338214&rft_dat=%3Cproquest_RIE%3E3512703741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629160039&rft_id=info:pmid/25055380&rft_ieee_id=6858051&rfr_iscdi=true