pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery

[Display omitted] A novel pH-sensitive polymer, poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate (PLH–PLGA–TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH–PLGA–TPGS copolymer was confirmed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-01, Vol.11, p.137-150
Hauptverfasser: Li, Zhen, Qiu, Lipeng, Chen, Qing, Hao, Tangna, Qiao, Mingxi, Zhao, Haixia, Zhang, Jie, Hu, Haiyang, Zhao, Xiuli, Chen, Dawei, Mei, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 137
container_title Acta biomaterialia
container_volume 11
creator Li, Zhen
Qiu, Lipeng
Chen, Qing
Hao, Tangna
Qiao, Mingxi
Zhao, Haixia
Zhang, Jie
Hu, Haiyang
Zhao, Xiuli
Chen, Dawei
Mei, Lin
description [Display omitted] A novel pH-sensitive polymer, poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate (PLH–PLGA–TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH–PLGA–TPGS copolymer was confirmed by 1H-NMR, FTIR and GPC. The apparent pKa of the PLH–PLGA–TPGS copolymer was calculated to be 6.33 according to the acid–base titration curve. The doxorubicin (DOX)-loaded nanoparticles (PLH–PLGA–TPGS nanoparticles and PLGA–TPGS nanoparticles) and corresponding blank nanoparticles were prepared by a co-solvent evaporation method. The blank PLH–PLGA–TPGS nanoparticles showed an acidic pH-induced increase in particle size. The DOX-loaded nanoparticles based on PLH–PLGA–TPGS showed a pH-triggered drug-release behavior under acidic conditions. The results of in vitro cytotoxicity experiment on MCF-7 and MCF-7/ADR cells showed that the DOX-loaded PLH–PLGA–TPGS nanoparticles resulted in lower cell viability versus the PLGA–TPGS nanoparticles and free DOX solution. Confocal laser scanning microscopy images showed that DOX-loaded PLH–PLGA–TPGS nanoparticles were internalized by MCF-7/ADR cells after 1 and 4h incubation and most of them accumulated in lysosomes to accelerate DOX release under acidic conditions. In summary, the PLH–PLGA–TPGS nanoparticles have great potential to be used as carriers for anti-tumor drug delivery.
doi_str_mv 10.1016/j.actbio.2014.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629972227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114003973</els_id><sourcerecordid>1629972227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9a70578d00a915043d1c91296a23530c77ca2ab91a317f5c0d15a4242514bb893</originalsourceid><addsrcrecordid>eNp9Uctu1TAQtRCIvvgDhLIsC6e283C8QUIVtEiVuqFry7Envb7ytYPtVMqOf4Av5EvwJYUlqzPjOWeORweht5TUlND-al8rnUcbakZoWxNRF3iBTunAB8y7fnhZat4yzElPT9BZSntCmoGy4TU6YR1rWd_yU_RzvsUJfLLZPkHllQ-zitlqB6kKUzUHt146vLMpW2M9vP_1_cf2VsytAawDfnSrDq40x2EOOsw7iKv7o4W8Wx14qDZSlRatrVcZqinESvlscV4OpTRxeawMuPKLuF6gV5NyCd484zl6-Pzp6_Utvru_-XL98Q7rpmcZC8VJxwdDiBK0I21jqBaUiV6xpmuI5lwrpkZBVUP51GliaKfacnlH23EcRHOOLre9cwzfFkhZHmzS4JzyEJYkac-E4IwxXqjtRtUxpBRhknO0BxVXSYk85iH3cstDHvOQRMgCRfbu2WEZD2D-if4GUAgfNgKUO58sRJm0Ba_B2Ag6SxPs_x1-A4kDosA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629972227</pqid></control><display><type>article</type><title>pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Zhen ; Qiu, Lipeng ; Chen, Qing ; Hao, Tangna ; Qiao, Mingxi ; Zhao, Haixia ; Zhang, Jie ; Hu, Haiyang ; Zhao, Xiuli ; Chen, Dawei ; Mei, Lin</creator><creatorcontrib>Li, Zhen ; Qiu, Lipeng ; Chen, Qing ; Hao, Tangna ; Qiao, Mingxi ; Zhao, Haixia ; Zhang, Jie ; Hu, Haiyang ; Zhao, Xiuli ; Chen, Dawei ; Mei, Lin</creatorcontrib><description>[Display omitted] A novel pH-sensitive polymer, poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate (PLH–PLGA–TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH–PLGA–TPGS copolymer was confirmed by 1H-NMR, FTIR and GPC. The apparent pKa of the PLH–PLGA–TPGS copolymer was calculated to be 6.33 according to the acid–base titration curve. The doxorubicin (DOX)-loaded nanoparticles (PLH–PLGA–TPGS nanoparticles and PLGA–TPGS nanoparticles) and corresponding blank nanoparticles were prepared by a co-solvent evaporation method. The blank PLH–PLGA–TPGS nanoparticles showed an acidic pH-induced increase in particle size. The DOX-loaded nanoparticles based on PLH–PLGA–TPGS showed a pH-triggered drug-release behavior under acidic conditions. The results of in vitro cytotoxicity experiment on MCF-7 and MCF-7/ADR cells showed that the DOX-loaded PLH–PLGA–TPGS nanoparticles resulted in lower cell viability versus the PLGA–TPGS nanoparticles and free DOX solution. Confocal laser scanning microscopy images showed that DOX-loaded PLH–PLGA–TPGS nanoparticles were internalized by MCF-7/ADR cells after 1 and 4h incubation and most of them accumulated in lysosomes to accelerate DOX release under acidic conditions. In summary, the PLH–PLGA–TPGS nanoparticles have great potential to be used as carriers for anti-tumor drug delivery.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.09.014</identifier><identifier>PMID: 25242647</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antibiotics, Antineoplastic - chemistry ; Antibiotics, Antineoplastic - pharmacokinetics ; Antibiotics, Antineoplastic - pharmacology ; Copolymer nanoparticles ; Cytotoxicity ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacokinetics ; Doxorubicin - pharmacology ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug Screening Assays, Antitumor ; Female ; Histidine - chemistry ; Histidine - pharmacokinetics ; Histidine - pharmacology ; Humans ; Hydrogen-Ion Concentration ; Multi-drug resistance ; Nanoparticles - chemistry ; pH-sensitive ; Polyglactin 910 - chemistry ; Polyglactin 910 - pharmacokinetics ; Polyglactin 910 - pharmacology ; Vitamin E - chemistry ; Vitamin E - pharmacokinetics ; Vitamin E - pharmacology</subject><ispartof>Acta biomaterialia, 2015-01, Vol.11, p.137-150</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9a70578d00a915043d1c91296a23530c77ca2ab91a317f5c0d15a4242514bb893</citedby><cites>FETCH-LOGICAL-c362t-9a70578d00a915043d1c91296a23530c77ca2ab91a317f5c0d15a4242514bb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706114003973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25242647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Qiu, Lipeng</creatorcontrib><creatorcontrib>Chen, Qing</creatorcontrib><creatorcontrib>Hao, Tangna</creatorcontrib><creatorcontrib>Qiao, Mingxi</creatorcontrib><creatorcontrib>Zhao, Haixia</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Hu, Haiyang</creatorcontrib><creatorcontrib>Zhao, Xiuli</creatorcontrib><creatorcontrib>Chen, Dawei</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><title>pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] A novel pH-sensitive polymer, poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate (PLH–PLGA–TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH–PLGA–TPGS copolymer was confirmed by 1H-NMR, FTIR and GPC. The apparent pKa of the PLH–PLGA–TPGS copolymer was calculated to be 6.33 according to the acid–base titration curve. The doxorubicin (DOX)-loaded nanoparticles (PLH–PLGA–TPGS nanoparticles and PLGA–TPGS nanoparticles) and corresponding blank nanoparticles were prepared by a co-solvent evaporation method. The blank PLH–PLGA–TPGS nanoparticles showed an acidic pH-induced increase in particle size. The DOX-loaded nanoparticles based on PLH–PLGA–TPGS showed a pH-triggered drug-release behavior under acidic conditions. The results of in vitro cytotoxicity experiment on MCF-7 and MCF-7/ADR cells showed that the DOX-loaded PLH–PLGA–TPGS nanoparticles resulted in lower cell viability versus the PLGA–TPGS nanoparticles and free DOX solution. Confocal laser scanning microscopy images showed that DOX-loaded PLH–PLGA–TPGS nanoparticles were internalized by MCF-7/ADR cells after 1 and 4h incubation and most of them accumulated in lysosomes to accelerate DOX release under acidic conditions. In summary, the PLH–PLGA–TPGS nanoparticles have great potential to be used as carriers for anti-tumor drug delivery.</description><subject>Antibiotics, Antineoplastic - chemistry</subject><subject>Antibiotics, Antineoplastic - pharmacokinetics</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Copolymer nanoparticles</subject><subject>Cytotoxicity</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Female</subject><subject>Histidine - chemistry</subject><subject>Histidine - pharmacokinetics</subject><subject>Histidine - pharmacology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Multi-drug resistance</subject><subject>Nanoparticles - chemistry</subject><subject>pH-sensitive</subject><subject>Polyglactin 910 - chemistry</subject><subject>Polyglactin 910 - pharmacokinetics</subject><subject>Polyglactin 910 - pharmacology</subject><subject>Vitamin E - chemistry</subject><subject>Vitamin E - pharmacokinetics</subject><subject>Vitamin E - pharmacology</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu1TAQtRCIvvgDhLIsC6e283C8QUIVtEiVuqFry7Envb7ytYPtVMqOf4Av5EvwJYUlqzPjOWeORweht5TUlND-al8rnUcbakZoWxNRF3iBTunAB8y7fnhZat4yzElPT9BZSntCmoGy4TU6YR1rWd_yU_RzvsUJfLLZPkHllQ-zitlqB6kKUzUHt146vLMpW2M9vP_1_cf2VsytAawDfnSrDq40x2EOOsw7iKv7o4W8Wx14qDZSlRatrVcZqinESvlscV4OpTRxeawMuPKLuF6gV5NyCd484zl6-Pzp6_Utvru_-XL98Q7rpmcZC8VJxwdDiBK0I21jqBaUiV6xpmuI5lwrpkZBVUP51GliaKfacnlH23EcRHOOLre9cwzfFkhZHmzS4JzyEJYkac-E4IwxXqjtRtUxpBRhknO0BxVXSYk85iH3cstDHvOQRMgCRfbu2WEZD2D-if4GUAgfNgKUO58sRJm0Ba_B2Ag6SxPs_x1-A4kDosA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Li, Zhen</creator><creator>Qiu, Lipeng</creator><creator>Chen, Qing</creator><creator>Hao, Tangna</creator><creator>Qiao, Mingxi</creator><creator>Zhao, Haixia</creator><creator>Zhang, Jie</creator><creator>Hu, Haiyang</creator><creator>Zhao, Xiuli</creator><creator>Chen, Dawei</creator><creator>Mei, Lin</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery</title><author>Li, Zhen ; Qiu, Lipeng ; Chen, Qing ; Hao, Tangna ; Qiao, Mingxi ; Zhao, Haixia ; Zhang, Jie ; Hu, Haiyang ; Zhao, Xiuli ; Chen, Dawei ; Mei, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9a70578d00a915043d1c91296a23530c77ca2ab91a317f5c0d15a4242514bb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antibiotics, Antineoplastic - chemistry</topic><topic>Antibiotics, Antineoplastic - pharmacokinetics</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Copolymer nanoparticles</topic><topic>Cytotoxicity</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Female</topic><topic>Histidine - chemistry</topic><topic>Histidine - pharmacokinetics</topic><topic>Histidine - pharmacology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Multi-drug resistance</topic><topic>Nanoparticles - chemistry</topic><topic>pH-sensitive</topic><topic>Polyglactin 910 - chemistry</topic><topic>Polyglactin 910 - pharmacokinetics</topic><topic>Polyglactin 910 - pharmacology</topic><topic>Vitamin E - chemistry</topic><topic>Vitamin E - pharmacokinetics</topic><topic>Vitamin E - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Qiu, Lipeng</creatorcontrib><creatorcontrib>Chen, Qing</creatorcontrib><creatorcontrib>Hao, Tangna</creatorcontrib><creatorcontrib>Qiao, Mingxi</creatorcontrib><creatorcontrib>Zhao, Haixia</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Hu, Haiyang</creatorcontrib><creatorcontrib>Zhao, Xiuli</creatorcontrib><creatorcontrib>Chen, Dawei</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhen</au><au>Qiu, Lipeng</au><au>Chen, Qing</au><au>Hao, Tangna</au><au>Qiao, Mingxi</au><au>Zhao, Haixia</au><au>Zhang, Jie</au><au>Hu, Haiyang</au><au>Zhao, Xiuli</au><au>Chen, Dawei</au><au>Mei, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>11</volume><spage>137</spage><epage>150</epage><pages>137-150</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] A novel pH-sensitive polymer, poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate (PLH–PLGA–TPGS), was synthesized to design a biocompatible drug delivery system for cancer chemotherapy. The structure of the PLH–PLGA–TPGS copolymer was confirmed by 1H-NMR, FTIR and GPC. The apparent pKa of the PLH–PLGA–TPGS copolymer was calculated to be 6.33 according to the acid–base titration curve. The doxorubicin (DOX)-loaded nanoparticles (PLH–PLGA–TPGS nanoparticles and PLGA–TPGS nanoparticles) and corresponding blank nanoparticles were prepared by a co-solvent evaporation method. The blank PLH–PLGA–TPGS nanoparticles showed an acidic pH-induced increase in particle size. The DOX-loaded nanoparticles based on PLH–PLGA–TPGS showed a pH-triggered drug-release behavior under acidic conditions. The results of in vitro cytotoxicity experiment on MCF-7 and MCF-7/ADR cells showed that the DOX-loaded PLH–PLGA–TPGS nanoparticles resulted in lower cell viability versus the PLGA–TPGS nanoparticles and free DOX solution. Confocal laser scanning microscopy images showed that DOX-loaded PLH–PLGA–TPGS nanoparticles were internalized by MCF-7/ADR cells after 1 and 4h incubation and most of them accumulated in lysosomes to accelerate DOX release under acidic conditions. In summary, the PLH–PLGA–TPGS nanoparticles have great potential to be used as carriers for anti-tumor drug delivery.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25242647</pmid><doi>10.1016/j.actbio.2014.09.014</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2015-01, Vol.11, p.137-150
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1629972227
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antibiotics, Antineoplastic - chemistry
Antibiotics, Antineoplastic - pharmacokinetics
Antibiotics, Antineoplastic - pharmacology
Copolymer nanoparticles
Cytotoxicity
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - pharmacokinetics
Doxorubicin - pharmacology
Drug Carriers - chemistry
Drug Carriers - pharmacokinetics
Drug Carriers - pharmacology
Drug Screening Assays, Antitumor
Female
Histidine - chemistry
Histidine - pharmacokinetics
Histidine - pharmacology
Humans
Hydrogen-Ion Concentration
Multi-drug resistance
Nanoparticles - chemistry
pH-sensitive
Polyglactin 910 - chemistry
Polyglactin 910 - pharmacokinetics
Polyglactin 910 - pharmacology
Vitamin E - chemistry
Vitamin E - pharmacokinetics
Vitamin E - pharmacology
title pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-sensitive%20nanoparticles%20of%20poly(l-histidine)%E2%80%93poly(lactide-co-glycolide)%E2%80%93tocopheryl%20polyethylene%20glycol%20succinate%20for%20anti-tumor%20drug%20delivery&rft.jtitle=Acta%20biomaterialia&rft.au=Li,%20Zhen&rft.date=2015-01-01&rft.volume=11&rft.spage=137&rft.epage=150&rft.pages=137-150&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.09.014&rft_dat=%3Cproquest_cross%3E1629972227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629972227&rft_id=info:pmid/25242647&rft_els_id=S1742706114003973&rfr_iscdi=true