Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network
This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and the...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and therapeutics 2014-11, Vol.10 Suppl (7), p.C186-C194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C194 |
---|---|
container_issue | 7 |
container_start_page | C186 |
container_title | Journal of cancer research and therapeutics |
container_volume | 10 Suppl |
creator | Pan, Jun Cong, Zhijie Zhong, Ming Sun, Yihui |
description | This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis.
We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets.
The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs.
Differentially expressed modules are valuable to screen biomarkers combined with functional modules. |
doi_str_mv | 10.4103/0973-1482.145866 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629968659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A392433917</galeid><sourcerecordid>A392433917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</originalsourceid><addsrcrecordid>eNptkk2LFDEQhoMo7uzq3ZMEvHjpMR-dTHIcFnWFBS97D5l0ZY12J2OSVvYH-L9N2-OKMORQUPW8Rb2pQugVJdueEv6O6B3vaK_YlvZCSfkEbajWquspV0_R5rF8gS5L-UqI2DGmnqMLJnpBmCIb9Gsf7fhQQsHJ4y9wtDU5GMd5tBk7m12IabLYxgFPUG2ptga3ci3-A34Ei_0cXQ2p9cNTGuYRCg4RW3zMqUKI3Sm2ZIVs_6A4Qv2Z8rcX6Jm3Y4GXp3iF7j68v7u-6W4_f_x0vb_tXN_L2jkvHaeMM8L04IC2LxCMeUcUF15yO9iDHqyWQnHHvfeCKrpzTnqpDqAIv0Jv17ZtlO8zlGqmUBa7NkKai6GSaS2VFLqhb1b03o5gQvSptpkX3Oy5Zj3nmu4a1Z2h7iE2g2OK4ENL_8dvz_DtDTAFd1ZAVoHLqZQM3hxzmGx-MJSY5QTMsmOz7NisJ9Akr08m58MEw6Pg7875b0aPrQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629968659</pqid></control><display><type>article</type><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><source>MEDLINE</source><source>Medknow Open Access Medical Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</creator><creatorcontrib>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</creatorcontrib><description>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis.
We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets.
The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs.
Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</description><identifier>ISSN: 0973-1482</identifier><identifier>EISSN: 1998-4138</identifier><identifier>DOI: 10.4103/0973-1482.145866</identifier><identifier>PMID: 25450280</identifier><language>eng</language><publisher>India: Medknow Publications and Media Pvt. Ltd</publisher><subject>Biomarkers, Tumor - genetics ; Carcinoma, Hepatocellular - genetics ; Gene Expression Regulation, Neoplastic - genetics ; Gene Regulatory Networks - genetics ; Health aspects ; Hepatoma ; Humans ; Interactomes ; Liver Neoplasms - genetics ; Metastasis ; Neoplasm Metastasis - genetics ; Physiological aspects ; Protein Interaction Maps - genetics ; Transcriptome - genetics</subject><ispartof>Journal of cancer research and therapeutics, 2014-11, Vol.10 Suppl (7), p.C186-C194</ispartof><rights>COPYRIGHT 2014 Medknow Publications and Media Pvt. Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25450280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Cong, Zhijie</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Sun, Yihui</creatorcontrib><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><title>Journal of cancer research and therapeutics</title><addtitle>J Cancer Res Ther</addtitle><description>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis.
We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets.
The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs.
Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</description><subject>Biomarkers, Tumor - genetics</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Health aspects</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Interactomes</subject><subject>Liver Neoplasms - genetics</subject><subject>Metastasis</subject><subject>Neoplasm Metastasis - genetics</subject><subject>Physiological aspects</subject><subject>Protein Interaction Maps - genetics</subject><subject>Transcriptome - genetics</subject><issn>0973-1482</issn><issn>1998-4138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkk2LFDEQhoMo7uzq3ZMEvHjpMR-dTHIcFnWFBS97D5l0ZY12J2OSVvYH-L9N2-OKMORQUPW8Rb2pQugVJdueEv6O6B3vaK_YlvZCSfkEbajWquspV0_R5rF8gS5L-UqI2DGmnqMLJnpBmCIb9Gsf7fhQQsHJ4y9wtDU5GMd5tBk7m12IabLYxgFPUG2ptga3ci3-A34Ei_0cXQ2p9cNTGuYRCg4RW3zMqUKI3Sm2ZIVs_6A4Qv2Z8rcX6Jm3Y4GXp3iF7j68v7u-6W4_f_x0vb_tXN_L2jkvHaeMM8L04IC2LxCMeUcUF15yO9iDHqyWQnHHvfeCKrpzTnqpDqAIv0Jv17ZtlO8zlGqmUBa7NkKai6GSaS2VFLqhb1b03o5gQvSptpkX3Oy5Zj3nmu4a1Z2h7iE2g2OK4ENL_8dvz_DtDTAFd1ZAVoHLqZQM3hxzmGx-MJSY5QTMsmOz7NisJ9Akr08m58MEw6Pg7875b0aPrQw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Pan, Jun</creator><creator>Cong, Zhijie</creator><creator>Zhong, Ming</creator><creator>Sun, Yihui</creator><general>Medknow Publications and Media Pvt. Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><author>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomarkers, Tumor - genetics</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Health aspects</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Interactomes</topic><topic>Liver Neoplasms - genetics</topic><topic>Metastasis</topic><topic>Neoplasm Metastasis - genetics</topic><topic>Physiological aspects</topic><topic>Protein Interaction Maps - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Cong, Zhijie</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Sun, Yihui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cancer research and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jun</au><au>Cong, Zhijie</au><au>Zhong, Ming</au><au>Sun, Yihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</atitle><jtitle>Journal of cancer research and therapeutics</jtitle><addtitle>J Cancer Res Ther</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>10 Suppl</volume><issue>7</issue><spage>C186</spage><epage>C194</epage><pages>C186-C194</pages><issn>0973-1482</issn><eissn>1998-4138</eissn><abstract>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis.
We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets.
The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs.
Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</abstract><cop>India</cop><pub>Medknow Publications and Media Pvt. Ltd</pub><pmid>25450280</pmid><doi>10.4103/0973-1482.145866</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1482 |
ispartof | Journal of cancer research and therapeutics, 2014-11, Vol.10 Suppl (7), p.C186-C194 |
issn | 0973-1482 1998-4138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629968659 |
source | MEDLINE; Medknow Open Access Medical Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biomarkers, Tumor - genetics Carcinoma, Hepatocellular - genetics Gene Expression Regulation, Neoplastic - genetics Gene Regulatory Networks - genetics Health aspects Hepatoma Humans Interactomes Liver Neoplasms - genetics Metastasis Neoplasm Metastasis - genetics Physiological aspects Protein Interaction Maps - genetics Transcriptome - genetics |
title | Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hepatocellular%20carcinoma%20and%20metastatic%20hepatic%20carcinoma%20via%20functional%20modules%20in%20a%20protein-protein%20interaction%20network&rft.jtitle=Journal%20of%20cancer%20research%20and%20therapeutics&rft.au=Pan,%20Jun&rft.date=2014-11-01&rft.volume=10%20Suppl&rft.issue=7&rft.spage=C186&rft.epage=C194&rft.pages=C186-C194&rft.issn=0973-1482&rft.eissn=1998-4138&rft_id=info:doi/10.4103/0973-1482.145866&rft_dat=%3Cgale_proqu%3EA392433917%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629968659&rft_id=info:pmid/25450280&rft_galeid=A392433917&rfr_iscdi=true |