Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network

This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and therapeutics 2014-11, Vol.10 Suppl (7), p.C186-C194
Hauptverfasser: Pan, Jun, Cong, Zhijie, Zhong, Ming, Sun, Yihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C194
container_issue 7
container_start_page C186
container_title Journal of cancer research and therapeutics
container_volume 10 Suppl
creator Pan, Jun
Cong, Zhijie
Zhong, Ming
Sun, Yihui
description This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Differentially expressed modules are valuable to screen biomarkers combined with functional modules.
doi_str_mv 10.4103/0973-1482.145866
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629968659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A392433917</galeid><sourcerecordid>A392433917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</originalsourceid><addsrcrecordid>eNptkk2LFDEQhoMo7uzq3ZMEvHjpMR-dTHIcFnWFBS97D5l0ZY12J2OSVvYH-L9N2-OKMORQUPW8Rb2pQugVJdueEv6O6B3vaK_YlvZCSfkEbajWquspV0_R5rF8gS5L-UqI2DGmnqMLJnpBmCIb9Gsf7fhQQsHJ4y9wtDU5GMd5tBk7m12IabLYxgFPUG2ptga3ci3-A34Ei_0cXQ2p9cNTGuYRCg4RW3zMqUKI3Sm2ZIVs_6A4Qv2Z8rcX6Jm3Y4GXp3iF7j68v7u-6W4_f_x0vb_tXN_L2jkvHaeMM8L04IC2LxCMeUcUF15yO9iDHqyWQnHHvfeCKrpzTnqpDqAIv0Jv17ZtlO8zlGqmUBa7NkKai6GSaS2VFLqhb1b03o5gQvSptpkX3Oy5Zj3nmu4a1Z2h7iE2g2OK4ENL_8dvz_DtDTAFd1ZAVoHLqZQM3hxzmGx-MJSY5QTMsmOz7NisJ9Akr08m58MEw6Pg7875b0aPrQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629968659</pqid></control><display><type>article</type><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><source>MEDLINE</source><source>Medknow Open Access Medical Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</creator><creatorcontrib>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</creatorcontrib><description>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</description><identifier>ISSN: 0973-1482</identifier><identifier>EISSN: 1998-4138</identifier><identifier>DOI: 10.4103/0973-1482.145866</identifier><identifier>PMID: 25450280</identifier><language>eng</language><publisher>India: Medknow Publications and Media Pvt. Ltd</publisher><subject>Biomarkers, Tumor - genetics ; Carcinoma, Hepatocellular - genetics ; Gene Expression Regulation, Neoplastic - genetics ; Gene Regulatory Networks - genetics ; Health aspects ; Hepatoma ; Humans ; Interactomes ; Liver Neoplasms - genetics ; Metastasis ; Neoplasm Metastasis - genetics ; Physiological aspects ; Protein Interaction Maps - genetics ; Transcriptome - genetics</subject><ispartof>Journal of cancer research and therapeutics, 2014-11, Vol.10 Suppl (7), p.C186-C194</ispartof><rights>COPYRIGHT 2014 Medknow Publications and Media Pvt. Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25450280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Cong, Zhijie</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Sun, Yihui</creatorcontrib><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><title>Journal of cancer research and therapeutics</title><addtitle>J Cancer Res Ther</addtitle><description>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</description><subject>Biomarkers, Tumor - genetics</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Health aspects</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Interactomes</subject><subject>Liver Neoplasms - genetics</subject><subject>Metastasis</subject><subject>Neoplasm Metastasis - genetics</subject><subject>Physiological aspects</subject><subject>Protein Interaction Maps - genetics</subject><subject>Transcriptome - genetics</subject><issn>0973-1482</issn><issn>1998-4138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkk2LFDEQhoMo7uzq3ZMEvHjpMR-dTHIcFnWFBS97D5l0ZY12J2OSVvYH-L9N2-OKMORQUPW8Rb2pQugVJdueEv6O6B3vaK_YlvZCSfkEbajWquspV0_R5rF8gS5L-UqI2DGmnqMLJnpBmCIb9Gsf7fhQQsHJ4y9wtDU5GMd5tBk7m12IabLYxgFPUG2ptga3ci3-A34Ei_0cXQ2p9cNTGuYRCg4RW3zMqUKI3Sm2ZIVs_6A4Qv2Z8rcX6Jm3Y4GXp3iF7j68v7u-6W4_f_x0vb_tXN_L2jkvHaeMM8L04IC2LxCMeUcUF15yO9iDHqyWQnHHvfeCKrpzTnqpDqAIv0Jv17ZtlO8zlGqmUBa7NkKai6GSaS2VFLqhb1b03o5gQvSptpkX3Oy5Zj3nmu4a1Z2h7iE2g2OK4ENL_8dvz_DtDTAFd1ZAVoHLqZQM3hxzmGx-MJSY5QTMsmOz7NisJ9Akr08m58MEw6Pg7875b0aPrQw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Pan, Jun</creator><creator>Cong, Zhijie</creator><creator>Zhong, Ming</creator><creator>Sun, Yihui</creator><general>Medknow Publications and Media Pvt. Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</title><author>Pan, Jun ; Cong, Zhijie ; Zhong, Ming ; Sun, Yihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-cf6c31232029dce1103522fc0835f63adab9da96583c3fff51817cc6f68be803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomarkers, Tumor - genetics</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Health aspects</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Interactomes</topic><topic>Liver Neoplasms - genetics</topic><topic>Metastasis</topic><topic>Neoplasm Metastasis - genetics</topic><topic>Physiological aspects</topic><topic>Protein Interaction Maps - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Cong, Zhijie</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Sun, Yihui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cancer research and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jun</au><au>Cong, Zhijie</au><au>Zhong, Ming</au><au>Sun, Yihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network</atitle><jtitle>Journal of cancer research and therapeutics</jtitle><addtitle>J Cancer Res Ther</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>10 Suppl</volume><issue>7</issue><spage>C186</spage><epage>C194</epage><pages>C186-C194</pages><issn>0973-1482</issn><eissn>1998-4138</eissn><abstract>This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC) and metastatic hepatic carcinoma using network analysis. We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Differentially expressed modules are valuable to screen biomarkers combined with functional modules.</abstract><cop>India</cop><pub>Medknow Publications and Media Pvt. Ltd</pub><pmid>25450280</pmid><doi>10.4103/0973-1482.145866</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-1482
ispartof Journal of cancer research and therapeutics, 2014-11, Vol.10 Suppl (7), p.C186-C194
issn 0973-1482
1998-4138
language eng
recordid cdi_proquest_miscellaneous_1629968659
source MEDLINE; Medknow Open Access Medical Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biomarkers, Tumor - genetics
Carcinoma, Hepatocellular - genetics
Gene Expression Regulation, Neoplastic - genetics
Gene Regulatory Networks - genetics
Health aspects
Hepatoma
Humans
Interactomes
Liver Neoplasms - genetics
Metastasis
Neoplasm Metastasis - genetics
Physiological aspects
Protein Interaction Maps - genetics
Transcriptome - genetics
title Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hepatocellular%20carcinoma%20and%20metastatic%20hepatic%20carcinoma%20via%20functional%20modules%20in%20a%20protein-protein%20interaction%20network&rft.jtitle=Journal%20of%20cancer%20research%20and%20therapeutics&rft.au=Pan,%20Jun&rft.date=2014-11-01&rft.volume=10%20Suppl&rft.issue=7&rft.spage=C186&rft.epage=C194&rft.pages=C186-C194&rft.issn=0973-1482&rft.eissn=1998-4138&rft_id=info:doi/10.4103/0973-1482.145866&rft_dat=%3Cgale_proqu%3EA392433917%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629968659&rft_id=info:pmid/25450280&rft_galeid=A392433917&rfr_iscdi=true