Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study

Abstract Background context Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The spine journal 2014-12, Vol.14 (12), p.3002-3010
Hauptverfasser: Nayak, Aniruddh N., MS, Stein, Matthew I., MD, James, Chris R., MD, Gaskins, Roger B., MD, Cabezas, Andres F., BS, Adu-Lartey, Maxwell, DO, Castellvi, Antonio E., MD, Santoni, Brandon G., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3010
container_issue 12
container_start_page 3002
container_title The spine journal
container_volume 14
creator Nayak, Aniruddh N., MS
Stein, Matthew I., MD
James, Chris R., MD
Gaskins, Roger B., MD
Cabezas, Andres F., BS
Adu-Lartey, Maxwell, DO
Castellvi, Antonio E., MD
Santoni, Brandon G., PhD
description Abstract Background context Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating technique over two contiguous levels. Purpose To biomechanically compare the acute stability conferred by a stand-alone interbody fusion device with three integrated fixation screws (“anchored cage”) with a traditional six-hole rigid anterior plate in a two contiguous levels (C4–C5+C5–C6) fusion construct. We hypothesized that the anchored cage would confer comparable segmental rigidity to the cage and anterior plate construct. Study design A biomechanical laboratory study using cadaveric human cervical spines. Methods Seven (n=7) cadaveric human cervical spines (C3–C7) were subjected to quasistatic, pure-moment loading (±1.5 Nm) in flexion-extension (flex/ext), right/left lateral bending (RB/LB), and right/left axial rotation (RR/LR) for the following test conditions: intact; after discectomy and insertion of the AIC at C4–C5 and C5–C6 with anchoring screws engaged; after the removal of the integrated anchoring screws and instrumentation of an anterior locking plate (ALP) over both levels; and cage-only (CO) configuration with screws and anterior plate removed. Intervertebral range of motion (ROM) at the instrumented levels was the primary biomechanical outcome. Results Flex/ext, RB/LB, and RR/LR ROMs were significantly reduced (p.826). Conclusions The anchored cage fusion construct conferred similar acute biomechanical stability in lateral bending and axial rotation ROMs relative to rigid anterior plating. We identified a statistically significant reduction (Δ=3.4°, combined over two levels) in sagittal plane ROM conferred by the ALP relative to the AIC construct. Our biomechanical findings may support the clinical use of no-profile integrated interbody devices over two contiguous levels in ACDF.
doi_str_mv 10.1016/j.spinee.2014.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629956773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1529943014005749</els_id><sourcerecordid>1629956773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-38a86de3f85d67adc79ac98810240a2e3de5138a8d8fc9e919ae6a860246a6603</originalsourceid><addsrcrecordid>eNqFkk2O1DAQhSMEYoaBGyDkJZsEOz-OzQIJRvxJI7EA1pbHrnS7cceNy-lWrsKKs3AynM7Agg0rl1Sv_Pz8VVE8ZbRilPEXuwoPbgSoasraivKKMnavuGSiFyXjTX0_110tS9k29KJ4hLijlIqe1Q-Li7qVraCNvCx-vHFhD2arR2e0J3rUfkaHJAy5Jm5MEG-DnYnRGyAnl7YkbSPAubOJOoHNrdGA92FC4vWGoIlwwiwgmqRTKD0cwRMD8Xh2OD-aDBO6MBITRkxxMunl6vbr59GlGAimyc6PiweD9ghP7s6r4uu7t1-uP5Q3n95_vH59U5qW9alshBbcQjOIzvJeW9NLbaQQjNYt1TU0Fjq2iKwYjATJpAaeR3Kba85pc1U8X-89xPB9Akxq73BJpEfIoRTjtZQd7_smS9tVamJAjDCoQ3R7HWfFqFqoqJ1aqaiFiqJcZSp57Nmdw3S7B_t36A-GLHi1CiDnPDqICo2D_K3WRTBJ2eD-5_DvBca7M9JvMAPuwhQz2ZxFYa2o-rxsxrIYrKW061vZ_Ab1T7i5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629956773</pqid></control><display><type>article</type><title>Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Nayak, Aniruddh N., MS ; Stein, Matthew I., MD ; James, Chris R., MD ; Gaskins, Roger B., MD ; Cabezas, Andres F., BS ; Adu-Lartey, Maxwell, DO ; Castellvi, Antonio E., MD ; Santoni, Brandon G., PhD</creator><creatorcontrib>Nayak, Aniruddh N., MS ; Stein, Matthew I., MD ; James, Chris R., MD ; Gaskins, Roger B., MD ; Cabezas, Andres F., BS ; Adu-Lartey, Maxwell, DO ; Castellvi, Antonio E., MD ; Santoni, Brandon G., PhD</creatorcontrib><description>Abstract Background context Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating technique over two contiguous levels. Purpose To biomechanically compare the acute stability conferred by a stand-alone interbody fusion device with three integrated fixation screws (“anchored cage”) with a traditional six-hole rigid anterior plate in a two contiguous levels (C4–C5+C5–C6) fusion construct. We hypothesized that the anchored cage would confer comparable segmental rigidity to the cage and anterior plate construct. Study design A biomechanical laboratory study using cadaveric human cervical spines. Methods Seven (n=7) cadaveric human cervical spines (C3–C7) were subjected to quasistatic, pure-moment loading (±1.5 Nm) in flexion-extension (flex/ext), right/left lateral bending (RB/LB), and right/left axial rotation (RR/LR) for the following test conditions: intact; after discectomy and insertion of the AIC at C4–C5 and C5–C6 with anchoring screws engaged; after the removal of the integrated anchoring screws and instrumentation of an anterior locking plate (ALP) over both levels; and cage-only (CO) configuration with screws and anterior plate removed. Intervertebral range of motion (ROM) at the instrumented levels was the primary biomechanical outcome. Results Flex/ext, RB/LB, and RR/LR ROMs were significantly reduced (p&lt;.001) over both levels by AIC and ALP constructs relative to the CO construct. Significant reduction in flex/ext motion was achieved with the ALP (6.8±3.7) relative to the AIC (10.2°±4.6°) (p=.041) construct. No significant differences were seen in ROM reductions over the two levels between the AIC and APL groups in lateral bending or axial rotation (p&gt;.826). Conclusions The anchored cage fusion construct conferred similar acute biomechanical stability in lateral bending and axial rotation ROMs relative to rigid anterior plating. We identified a statistically significant reduction (Δ=3.4°, combined over two levels) in sagittal plane ROM conferred by the ALP relative to the AIC construct. Our biomechanical findings may support the clinical use of no-profile integrated interbody devices over two contiguous levels in ACDF.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2014.06.011</identifier><identifier>PMID: 24948039</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACDF ; Aged ; Anterior locking plate ; Biomechanical Phenomena ; Biomechanics ; Bone Screws ; Cervical spine ; Humans ; In Vitro Techniques ; Integrated screws ; Middle Aged ; Multi-level cervical arthrodesis ; No-profile interbody device ; Orthopedics ; Range of Motion, Articular ; Spinal Fusion - methods</subject><ispartof>The spine journal, 2014-12, Vol.14 (12), p.3002-3010</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-38a86de3f85d67adc79ac98810240a2e3de5138a8d8fc9e919ae6a860246a6603</citedby><cites>FETCH-LOGICAL-c417t-38a86de3f85d67adc79ac98810240a2e3de5138a8d8fc9e919ae6a860246a6603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spinee.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24948039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nayak, Aniruddh N., MS</creatorcontrib><creatorcontrib>Stein, Matthew I., MD</creatorcontrib><creatorcontrib>James, Chris R., MD</creatorcontrib><creatorcontrib>Gaskins, Roger B., MD</creatorcontrib><creatorcontrib>Cabezas, Andres F., BS</creatorcontrib><creatorcontrib>Adu-Lartey, Maxwell, DO</creatorcontrib><creatorcontrib>Castellvi, Antonio E., MD</creatorcontrib><creatorcontrib>Santoni, Brandon G., PhD</creatorcontrib><title>Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study</title><title>The spine journal</title><addtitle>Spine J</addtitle><description>Abstract Background context Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating technique over two contiguous levels. Purpose To biomechanically compare the acute stability conferred by a stand-alone interbody fusion device with three integrated fixation screws (“anchored cage”) with a traditional six-hole rigid anterior plate in a two contiguous levels (C4–C5+C5–C6) fusion construct. We hypothesized that the anchored cage would confer comparable segmental rigidity to the cage and anterior plate construct. Study design A biomechanical laboratory study using cadaveric human cervical spines. Methods Seven (n=7) cadaveric human cervical spines (C3–C7) were subjected to quasistatic, pure-moment loading (±1.5 Nm) in flexion-extension (flex/ext), right/left lateral bending (RB/LB), and right/left axial rotation (RR/LR) for the following test conditions: intact; after discectomy and insertion of the AIC at C4–C5 and C5–C6 with anchoring screws engaged; after the removal of the integrated anchoring screws and instrumentation of an anterior locking plate (ALP) over both levels; and cage-only (CO) configuration with screws and anterior plate removed. Intervertebral range of motion (ROM) at the instrumented levels was the primary biomechanical outcome. Results Flex/ext, RB/LB, and RR/LR ROMs were significantly reduced (p&lt;.001) over both levels by AIC and ALP constructs relative to the CO construct. Significant reduction in flex/ext motion was achieved with the ALP (6.8±3.7) relative to the AIC (10.2°±4.6°) (p=.041) construct. No significant differences were seen in ROM reductions over the two levels between the AIC and APL groups in lateral bending or axial rotation (p&gt;.826). Conclusions The anchored cage fusion construct conferred similar acute biomechanical stability in lateral bending and axial rotation ROMs relative to rigid anterior plating. We identified a statistically significant reduction (Δ=3.4°, combined over two levels) in sagittal plane ROM conferred by the ALP relative to the AIC construct. Our biomechanical findings may support the clinical use of no-profile integrated interbody devices over two contiguous levels in ACDF.</description><subject>ACDF</subject><subject>Aged</subject><subject>Anterior locking plate</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bone Screws</subject><subject>Cervical spine</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Integrated screws</subject><subject>Middle Aged</subject><subject>Multi-level cervical arthrodesis</subject><subject>No-profile interbody device</subject><subject>Orthopedics</subject><subject>Range of Motion, Articular</subject><subject>Spinal Fusion - methods</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2O1DAQhSMEYoaBGyDkJZsEOz-OzQIJRvxJI7EA1pbHrnS7cceNy-lWrsKKs3AynM7Agg0rl1Sv_Pz8VVE8ZbRilPEXuwoPbgSoasraivKKMnavuGSiFyXjTX0_110tS9k29KJ4hLijlIqe1Q-Li7qVraCNvCx-vHFhD2arR2e0J3rUfkaHJAy5Jm5MEG-DnYnRGyAnl7YkbSPAubOJOoHNrdGA92FC4vWGoIlwwiwgmqRTKD0cwRMD8Xh2OD-aDBO6MBITRkxxMunl6vbr59GlGAimyc6PiweD9ghP7s6r4uu7t1-uP5Q3n95_vH59U5qW9alshBbcQjOIzvJeW9NLbaQQjNYt1TU0Fjq2iKwYjATJpAaeR3Kba85pc1U8X-89xPB9Akxq73BJpEfIoRTjtZQd7_smS9tVamJAjDCoQ3R7HWfFqFqoqJ1aqaiFiqJcZSp57Nmdw3S7B_t36A-GLHi1CiDnPDqICo2D_K3WRTBJ2eD-5_DvBca7M9JvMAPuwhQz2ZxFYa2o-rxsxrIYrKW061vZ_Ab1T7i5</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Nayak, Aniruddh N., MS</creator><creator>Stein, Matthew I., MD</creator><creator>James, Chris R., MD</creator><creator>Gaskins, Roger B., MD</creator><creator>Cabezas, Andres F., BS</creator><creator>Adu-Lartey, Maxwell, DO</creator><creator>Castellvi, Antonio E., MD</creator><creator>Santoni, Brandon G., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141201</creationdate><title>Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study</title><author>Nayak, Aniruddh N., MS ; Stein, Matthew I., MD ; James, Chris R., MD ; Gaskins, Roger B., MD ; Cabezas, Andres F., BS ; Adu-Lartey, Maxwell, DO ; Castellvi, Antonio E., MD ; Santoni, Brandon G., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-38a86de3f85d67adc79ac98810240a2e3de5138a8d8fc9e919ae6a860246a6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACDF</topic><topic>Aged</topic><topic>Anterior locking plate</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bone Screws</topic><topic>Cervical spine</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Integrated screws</topic><topic>Middle Aged</topic><topic>Multi-level cervical arthrodesis</topic><topic>No-profile interbody device</topic><topic>Orthopedics</topic><topic>Range of Motion, Articular</topic><topic>Spinal Fusion - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Aniruddh N., MS</creatorcontrib><creatorcontrib>Stein, Matthew I., MD</creatorcontrib><creatorcontrib>James, Chris R., MD</creatorcontrib><creatorcontrib>Gaskins, Roger B., MD</creatorcontrib><creatorcontrib>Cabezas, Andres F., BS</creatorcontrib><creatorcontrib>Adu-Lartey, Maxwell, DO</creatorcontrib><creatorcontrib>Castellvi, Antonio E., MD</creatorcontrib><creatorcontrib>Santoni, Brandon G., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Aniruddh N., MS</au><au>Stein, Matthew I., MD</au><au>James, Chris R., MD</au><au>Gaskins, Roger B., MD</au><au>Cabezas, Andres F., BS</au><au>Adu-Lartey, Maxwell, DO</au><au>Castellvi, Antonio E., MD</au><au>Santoni, Brandon G., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study</atitle><jtitle>The spine journal</jtitle><addtitle>Spine J</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>14</volume><issue>12</issue><spage>3002</spage><epage>3010</epage><pages>3002-3010</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>Abstract Background context Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating technique over two contiguous levels. Purpose To biomechanically compare the acute stability conferred by a stand-alone interbody fusion device with three integrated fixation screws (“anchored cage”) with a traditional six-hole rigid anterior plate in a two contiguous levels (C4–C5+C5–C6) fusion construct. We hypothesized that the anchored cage would confer comparable segmental rigidity to the cage and anterior plate construct. Study design A biomechanical laboratory study using cadaveric human cervical spines. Methods Seven (n=7) cadaveric human cervical spines (C3–C7) were subjected to quasistatic, pure-moment loading (±1.5 Nm) in flexion-extension (flex/ext), right/left lateral bending (RB/LB), and right/left axial rotation (RR/LR) for the following test conditions: intact; after discectomy and insertion of the AIC at C4–C5 and C5–C6 with anchoring screws engaged; after the removal of the integrated anchoring screws and instrumentation of an anterior locking plate (ALP) over both levels; and cage-only (CO) configuration with screws and anterior plate removed. Intervertebral range of motion (ROM) at the instrumented levels was the primary biomechanical outcome. Results Flex/ext, RB/LB, and RR/LR ROMs were significantly reduced (p&lt;.001) over both levels by AIC and ALP constructs relative to the CO construct. Significant reduction in flex/ext motion was achieved with the ALP (6.8±3.7) relative to the AIC (10.2°±4.6°) (p=.041) construct. No significant differences were seen in ROM reductions over the two levels between the AIC and APL groups in lateral bending or axial rotation (p&gt;.826). Conclusions The anchored cage fusion construct conferred similar acute biomechanical stability in lateral bending and axial rotation ROMs relative to rigid anterior plating. We identified a statistically significant reduction (Δ=3.4°, combined over two levels) in sagittal plane ROM conferred by the ALP relative to the AIC construct. Our biomechanical findings may support the clinical use of no-profile integrated interbody devices over two contiguous levels in ACDF.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24948039</pmid><doi>10.1016/j.spinee.2014.06.011</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1529-9430
ispartof The spine journal, 2014-12, Vol.14 (12), p.3002-3010
issn 1529-9430
1878-1632
language eng
recordid cdi_proquest_miscellaneous_1629956773
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects ACDF
Aged
Anterior locking plate
Biomechanical Phenomena
Biomechanics
Bone Screws
Cervical spine
Humans
In Vitro Techniques
Integrated screws
Middle Aged
Multi-level cervical arthrodesis
No-profile interbody device
Orthopedics
Range of Motion, Articular
Spinal Fusion - methods
title Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20analysis%20of%20an%20interbody%20cage%20with%20three%20integrated%20cancellous%20lag%20screws%20in%20a%20two-level%20cervical%20spine%20fusion%20construct:%20an%20in%C2%A0vitro%20study&rft.jtitle=The%20spine%20journal&rft.au=Nayak,%20Aniruddh%20N.,%20MS&rft.date=2014-12-01&rft.volume=14&rft.issue=12&rft.spage=3002&rft.epage=3010&rft.pages=3002-3010&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2014.06.011&rft_dat=%3Cproquest_cross%3E1629956773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629956773&rft_id=info:pmid/24948039&rft_els_id=1_s2_0_S1529943014005749&rfr_iscdi=true