Personalized metabolic profile estimations using oral glucose tolerance tests

Oral glucose tolerance tests (OGTTs) are used commonly to diagnose diabetes mellitus (DM). However, blood glucose data and the changes in insulin induced by OGTTs contain information regarding intestinal absorption, hepatic control of glucose and insulin, pancreatic insulin secretion and peripheral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2014-09, Vol.116 (1), p.25-32
Hauptverfasser: Lee, Young Boum, Lee, Jeong Hoon, Park, Eun Seok, Kim, Ga Yul, Leem, Chae Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 25
container_title Progress in biophysics and molecular biology
container_volume 116
creator Lee, Young Boum
Lee, Jeong Hoon
Park, Eun Seok
Kim, Ga Yul
Leem, Chae Hun
description Oral glucose tolerance tests (OGTTs) are used commonly to diagnose diabetes mellitus (DM). However, blood glucose data and the changes in insulin induced by OGTTs contain information regarding intestinal absorption, hepatic control of glucose and insulin, pancreatic insulin secretion and peripheral tissue glucose and insulin control. Therefore, an appropriate dynamic model could reveal the above information from OGTT data. We developed an OGTT model containing five compartments for insulin dynamics and two compartments for glucose dynamics based on previous reports. Anthropometric data of individuals were used to assume the cardiac output. Simplex and Levenberg–Marquardt algorithms were then used to fit the data obtained from 42 normal subjects (24 males and 20 females) and eight subjects with DM. We found clear gender differences in the intestinal glucose absorption kinetics, glucose sensitivity in the pancreas, maximal insulin production capacity and endogenous glucose production. There were also differences between normal and DM subjects. For example, pancreatic and liver dysfunctions were evident in DM cases. The differences between normal and DM subjects in glucose and insulin dynamics in the pancreas, liver and peripheral tissues, such as insulin resistance, insulin secretion and the relative roles of glucose disposal in each organ, were demonstrated clearly and quantitatively in a time-dependent manner. This study revealed the quantitative dynamic interaction between glucose and insulin using OGTT data and revealed organ function during the OGTT. Using this approach, we identified the dysfunctional organs for glucose and insulin regulation. Data produced using this model will allow a personalized and targeted approach for health issues related to glucose and insulin.
doi_str_mv 10.1016/j.pbiomolbio.2014.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629956643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610714000868</els_id><sourcerecordid>1629956643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-572a574e6110b5e163ef68b8d4fdcf2437077fc77bfe04270dffcdfb6d216dac3</originalsourceid><addsrcrecordid>eNqFkM1u1TAQRi1URG9_XgFl2U3CjJPYybKtWkAqggWsLcceV75y4oudIMHT4-q2sOzG48WZ-WYOYxVCg4Diw745TD7OMZS34YBdA0MDiG_YDgfZ1ihbfsJ2AHKsBYI8ZWc57wGAoxTv2CnvsZcj73fsyzdKOS46-D9kq5lWPcXgTXVI0flAFeXVz3r1ccnVlv3yWMWkQ_UYNhMzVWsMlPRiyq-Q-YK9dTpkunyu5-zH_d3320_1w9ePn2-vH2rDh3Gte8l1LzsSiDD1hKIlJ4ZpsJ2zxvGulSClM1JOjqDjEqxzxrpJWI7CatOes6vj3LLmz60kq9lnQyHoheKWFQo-jr0QXVvQ4YiaFHNO5NQhlYvSb4WgnmSqvfovUz3JVDCoIrO0vn9O2aaZ7L_GF3sFuDkCVG795SmpbDwVG9YnMquy0b-e8hcNcY0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629956643</pqid></control><display><type>article</type><title>Personalized metabolic profile estimations using oral glucose tolerance tests</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lee, Young Boum ; Lee, Jeong Hoon ; Park, Eun Seok ; Kim, Ga Yul ; Leem, Chae Hun</creator><creatorcontrib>Lee, Young Boum ; Lee, Jeong Hoon ; Park, Eun Seok ; Kim, Ga Yul ; Leem, Chae Hun</creatorcontrib><description>Oral glucose tolerance tests (OGTTs) are used commonly to diagnose diabetes mellitus (DM). However, blood glucose data and the changes in insulin induced by OGTTs contain information regarding intestinal absorption, hepatic control of glucose and insulin, pancreatic insulin secretion and peripheral tissue glucose and insulin control. Therefore, an appropriate dynamic model could reveal the above information from OGTT data. We developed an OGTT model containing five compartments for insulin dynamics and two compartments for glucose dynamics based on previous reports. Anthropometric data of individuals were used to assume the cardiac output. Simplex and Levenberg–Marquardt algorithms were then used to fit the data obtained from 42 normal subjects (24 males and 20 females) and eight subjects with DM. We found clear gender differences in the intestinal glucose absorption kinetics, glucose sensitivity in the pancreas, maximal insulin production capacity and endogenous glucose production. There were also differences between normal and DM subjects. For example, pancreatic and liver dysfunctions were evident in DM cases. The differences between normal and DM subjects in glucose and insulin dynamics in the pancreas, liver and peripheral tissues, such as insulin resistance, insulin secretion and the relative roles of glucose disposal in each organ, were demonstrated clearly and quantitatively in a time-dependent manner. This study revealed the quantitative dynamic interaction between glucose and insulin using OGTT data and revealed organ function during the OGTT. Using this approach, we identified the dysfunctional organs for glucose and insulin regulation. Data produced using this model will allow a personalized and targeted approach for health issues related to glucose and insulin.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2014.08.011</identifier><identifier>PMID: 25157925</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Blood Glucose - metabolism ; Computer Simulation ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - metabolism ; Female ; Glucose ; Glucose Tolerance Test - methods ; Humans ; Insulin ; Insulin - blood ; Liver - metabolism ; Male ; Metabolic Clearance Rate ; Oral glucose tolerance test ; Patient-Specific Modeling ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Progress in biophysics and molecular biology, 2014-09, Vol.116 (1), p.25-32</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-572a574e6110b5e163ef68b8d4fdcf2437077fc77bfe04270dffcdfb6d216dac3</citedby><cites>FETCH-LOGICAL-c289t-572a574e6110b5e163ef68b8d4fdcf2437077fc77bfe04270dffcdfb6d216dac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610714000868$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25157925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Young Boum</creatorcontrib><creatorcontrib>Lee, Jeong Hoon</creatorcontrib><creatorcontrib>Park, Eun Seok</creatorcontrib><creatorcontrib>Kim, Ga Yul</creatorcontrib><creatorcontrib>Leem, Chae Hun</creatorcontrib><title>Personalized metabolic profile estimations using oral glucose tolerance tests</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Oral glucose tolerance tests (OGTTs) are used commonly to diagnose diabetes mellitus (DM). However, blood glucose data and the changes in insulin induced by OGTTs contain information regarding intestinal absorption, hepatic control of glucose and insulin, pancreatic insulin secretion and peripheral tissue glucose and insulin control. Therefore, an appropriate dynamic model could reveal the above information from OGTT data. We developed an OGTT model containing five compartments for insulin dynamics and two compartments for glucose dynamics based on previous reports. Anthropometric data of individuals were used to assume the cardiac output. Simplex and Levenberg–Marquardt algorithms were then used to fit the data obtained from 42 normal subjects (24 males and 20 females) and eight subjects with DM. We found clear gender differences in the intestinal glucose absorption kinetics, glucose sensitivity in the pancreas, maximal insulin production capacity and endogenous glucose production. There were also differences between normal and DM subjects. For example, pancreatic and liver dysfunctions were evident in DM cases. The differences between normal and DM subjects in glucose and insulin dynamics in the pancreas, liver and peripheral tissues, such as insulin resistance, insulin secretion and the relative roles of glucose disposal in each organ, were demonstrated clearly and quantitatively in a time-dependent manner. This study revealed the quantitative dynamic interaction between glucose and insulin using OGTT data and revealed organ function during the OGTT. Using this approach, we identified the dysfunctional organs for glucose and insulin regulation. Data produced using this model will allow a personalized and targeted approach for health issues related to glucose and insulin.</description><subject>Adult</subject><subject>Blood Glucose - metabolism</subject><subject>Computer Simulation</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose Tolerance Test - methods</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - blood</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolic Clearance Rate</subject><subject>Oral glucose tolerance test</subject><subject>Patient-Specific Modeling</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u1TAQRi1URG9_XgFl2U3CjJPYybKtWkAqggWsLcceV75y4oudIMHT4-q2sOzG48WZ-WYOYxVCg4Diw745TD7OMZS34YBdA0MDiG_YDgfZ1ihbfsJ2AHKsBYI8ZWc57wGAoxTv2CnvsZcj73fsyzdKOS46-D9kq5lWPcXgTXVI0flAFeXVz3r1ccnVlv3yWMWkQ_UYNhMzVWsMlPRiyq-Q-YK9dTpkunyu5-zH_d3320_1w9ePn2-vH2rDh3Gte8l1LzsSiDD1hKIlJ4ZpsJ2zxvGulSClM1JOjqDjEqxzxrpJWI7CatOes6vj3LLmz60kq9lnQyHoheKWFQo-jr0QXVvQ4YiaFHNO5NQhlYvSb4WgnmSqvfovUz3JVDCoIrO0vn9O2aaZ7L_GF3sFuDkCVG795SmpbDwVG9YnMquy0b-e8hcNcY0M</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Lee, Young Boum</creator><creator>Lee, Jeong Hoon</creator><creator>Park, Eun Seok</creator><creator>Kim, Ga Yul</creator><creator>Leem, Chae Hun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Personalized metabolic profile estimations using oral glucose tolerance tests</title><author>Lee, Young Boum ; Lee, Jeong Hoon ; Park, Eun Seok ; Kim, Ga Yul ; Leem, Chae Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-572a574e6110b5e163ef68b8d4fdcf2437077fc77bfe04270dffcdfb6d216dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Blood Glucose - metabolism</topic><topic>Computer Simulation</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose Tolerance Test - methods</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - blood</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolic Clearance Rate</topic><topic>Oral glucose tolerance test</topic><topic>Patient-Specific Modeling</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young Boum</creatorcontrib><creatorcontrib>Lee, Jeong Hoon</creatorcontrib><creatorcontrib>Park, Eun Seok</creatorcontrib><creatorcontrib>Kim, Ga Yul</creatorcontrib><creatorcontrib>Leem, Chae Hun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young Boum</au><au>Lee, Jeong Hoon</au><au>Park, Eun Seok</au><au>Kim, Ga Yul</au><au>Leem, Chae Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized metabolic profile estimations using oral glucose tolerance tests</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2014-09</date><risdate>2014</risdate><volume>116</volume><issue>1</issue><spage>25</spage><epage>32</epage><pages>25-32</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Oral glucose tolerance tests (OGTTs) are used commonly to diagnose diabetes mellitus (DM). However, blood glucose data and the changes in insulin induced by OGTTs contain information regarding intestinal absorption, hepatic control of glucose and insulin, pancreatic insulin secretion and peripheral tissue glucose and insulin control. Therefore, an appropriate dynamic model could reveal the above information from OGTT data. We developed an OGTT model containing five compartments for insulin dynamics and two compartments for glucose dynamics based on previous reports. Anthropometric data of individuals were used to assume the cardiac output. Simplex and Levenberg–Marquardt algorithms were then used to fit the data obtained from 42 normal subjects (24 males and 20 females) and eight subjects with DM. We found clear gender differences in the intestinal glucose absorption kinetics, glucose sensitivity in the pancreas, maximal insulin production capacity and endogenous glucose production. There were also differences between normal and DM subjects. For example, pancreatic and liver dysfunctions were evident in DM cases. The differences between normal and DM subjects in glucose and insulin dynamics in the pancreas, liver and peripheral tissues, such as insulin resistance, insulin secretion and the relative roles of glucose disposal in each organ, were demonstrated clearly and quantitatively in a time-dependent manner. This study revealed the quantitative dynamic interaction between glucose and insulin using OGTT data and revealed organ function during the OGTT. Using this approach, we identified the dysfunctional organs for glucose and insulin regulation. Data produced using this model will allow a personalized and targeted approach for health issues related to glucose and insulin.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25157925</pmid><doi>10.1016/j.pbiomolbio.2014.08.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2014-09, Vol.116 (1), p.25-32
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_1629956643
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Blood Glucose - metabolism
Computer Simulation
Diabetes mellitus
Diabetes Mellitus - diagnosis
Diabetes Mellitus - metabolism
Female
Glucose
Glucose Tolerance Test - methods
Humans
Insulin
Insulin - blood
Liver - metabolism
Male
Metabolic Clearance Rate
Oral glucose tolerance test
Patient-Specific Modeling
Reproducibility of Results
Sensitivity and Specificity
title Personalized metabolic profile estimations using oral glucose tolerance tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20metabolic%20profile%20estimations%20using%20oral%20glucose%20tolerance%20tests&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Lee,%20Young%20Boum&rft.date=2014-09&rft.volume=116&rft.issue=1&rft.spage=25&rft.epage=32&rft.pages=25-32&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2014.08.011&rft_dat=%3Cproquest_cross%3E1629956643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629956643&rft_id=info:pmid/25157925&rft_els_id=S0079610714000868&rfr_iscdi=true