Finite element analysis and validation of dielectric elastomer actuators used for active origami

The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2014-09, Vol.23 (9), p.1-10
Hauptverfasser: McGough, Kevin, Ahmed, Saad, Frecker, Mary, Ounaies, Zoubeida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 1
container_title Smart materials and structures
container_volume 23
creator McGough, Kevin
Ahmed, Saad
Frecker, Mary
Ounaies, Zoubeida
description The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.
doi_str_mv 10.1088/0964-1726/23/9/094002
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629373330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677992057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</originalsourceid><addsrcrecordid>eNqNkE1LHTEUhkNpobfqTyhkI-1mevMxk4-lSNWCxYUV3KXnZk4kMjO5JhnBf-9cr0gXhXZ1Pnjec-Ah5DNn3zgzZs2sahuuhVoLubbL2DIm3pEVl4o3SnW378nqjflIPpVyzxjnRvIV-X0Wp1iR4oAjTpXCBMNTiWVpevoIQ-yhxjTRFGgfF8jXHP1CQ6lpxEzB1xlqyoXOBXsa0ssqPiJNOd7BGA_JhwBDwaPXekBuzr7_Or1oLq_Of5yeXDa-NbY2upeIQlove5Sgwkb40HXBM2Vs65lRAB3jqEFu9EYY4KxTWkihvBICjZAH5Ov-7janhxlLdWMsHocBJkxzcVxpba1gnf4PVFippZRsQbs96nMqJWNw2xxHyE-OM7eT73Zi3U6sE9JZt5e_5I5fX0DxMIQMk4_lLSyMbrWxduH4notp6-7TnBf95Z-3v_wlc_3z-k_KbfsgnwEYcKBj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629373330</pqid></control><display><type>article</type><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</creator><creatorcontrib>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</creatorcontrib><description>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/23/9/094002</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Actuation ; Actuators ; dielectric elastomer ; Dielectrics ; Elastomers ; Exact sciences and technology ; finite element analysis ; Finite element method ; Folding ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; origami engineering ; Physics ; Three dimensional ; Transducers</subject><ispartof>Smart materials and structures, 2014-09, Vol.23 (9), p.1-10</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</citedby><cites>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/23/9/094002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27933,27934,53855,53902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28747899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McGough, Kevin</creatorcontrib><creatorcontrib>Ahmed, Saad</creatorcontrib><creatorcontrib>Frecker, Mary</creatorcontrib><creatorcontrib>Ounaies, Zoubeida</creatorcontrib><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</description><subject>Actuation</subject><subject>Actuators</subject><subject>dielectric elastomer</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Exact sciences and technology</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>Folding</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>origami engineering</subject><subject>Physics</subject><subject>Three dimensional</subject><subject>Transducers</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LHTEUhkNpobfqTyhkI-1mevMxk4-lSNWCxYUV3KXnZk4kMjO5JhnBf-9cr0gXhXZ1Pnjec-Ah5DNn3zgzZs2sahuuhVoLubbL2DIm3pEVl4o3SnW378nqjflIPpVyzxjnRvIV-X0Wp1iR4oAjTpXCBMNTiWVpevoIQ-yhxjTRFGgfF8jXHP1CQ6lpxEzB1xlqyoXOBXsa0ssqPiJNOd7BGA_JhwBDwaPXekBuzr7_Or1oLq_Of5yeXDa-NbY2upeIQlove5Sgwkb40HXBM2Vs65lRAB3jqEFu9EYY4KxTWkihvBICjZAH5Ov-7janhxlLdWMsHocBJkxzcVxpba1gnf4PVFippZRsQbs96nMqJWNw2xxHyE-OM7eT73Zi3U6sE9JZt5e_5I5fX0DxMIQMk4_lLSyMbrWxduH4notp6-7TnBf95Z-3v_wlc_3z-k_KbfsgnwEYcKBj</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>McGough, Kevin</creator><creator>Ahmed, Saad</creator><creator>Frecker, Mary</creator><creator>Ounaies, Zoubeida</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><author>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>dielectric elastomer</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Exact sciences and technology</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>Folding</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>origami engineering</topic><topic>Physics</topic><topic>Three dimensional</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGough, Kevin</creatorcontrib><creatorcontrib>Ahmed, Saad</creatorcontrib><creatorcontrib>Frecker, Mary</creatorcontrib><creatorcontrib>Ounaies, Zoubeida</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGough, Kevin</au><au>Ahmed, Saad</au><au>Frecker, Mary</au><au>Ounaies, Zoubeida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis and validation of dielectric elastomer actuators used for active origami</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/23/9/094002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2014-09, Vol.23 (9), p.1-10
issn 0964-1726
1361-665X
language eng
recordid cdi_proquest_miscellaneous_1629373330
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Actuation
Actuators
dielectric elastomer
Dielectrics
Elastomers
Exact sciences and technology
finite element analysis
Finite element method
Folding
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical analysis
origami engineering
Physics
Three dimensional
Transducers
title Finite element analysis and validation of dielectric elastomer actuators used for active origami
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20and%20validation%20of%20dielectric%20elastomer%20actuators%20used%20for%20active%20origami&rft.jtitle=Smart%20materials%20and%20structures&rft.au=McGough,%20Kevin&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/0964-1726/23/9/094002&rft_dat=%3Cproquest_pasca%3E1677992057%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629373330&rft_id=info:pmid/&rfr_iscdi=true