Finite element analysis and validation of dielectric elastomer actuators used for active origami
The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile c...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2014-09, Vol.23 (9), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Smart materials and structures |
container_volume | 23 |
creator | McGough, Kevin Ahmed, Saad Frecker, Mary Ounaies, Zoubeida |
description | The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed. |
doi_str_mv | 10.1088/0964-1726/23/9/094002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629373330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677992057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</originalsourceid><addsrcrecordid>eNqNkE1LHTEUhkNpobfqTyhkI-1mevMxk4-lSNWCxYUV3KXnZk4kMjO5JhnBf-9cr0gXhXZ1Pnjec-Ah5DNn3zgzZs2sahuuhVoLubbL2DIm3pEVl4o3SnW378nqjflIPpVyzxjnRvIV-X0Wp1iR4oAjTpXCBMNTiWVpevoIQ-yhxjTRFGgfF8jXHP1CQ6lpxEzB1xlqyoXOBXsa0ssqPiJNOd7BGA_JhwBDwaPXekBuzr7_Or1oLq_Of5yeXDa-NbY2upeIQlove5Sgwkb40HXBM2Vs65lRAB3jqEFu9EYY4KxTWkihvBICjZAH5Ov-7janhxlLdWMsHocBJkxzcVxpba1gnf4PVFippZRsQbs96nMqJWNw2xxHyE-OM7eT73Zi3U6sE9JZt5e_5I5fX0DxMIQMk4_lLSyMbrWxduH4notp6-7TnBf95Z-3v_wlc_3z-k_KbfsgnwEYcKBj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629373330</pqid></control><display><type>article</type><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</creator><creatorcontrib>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</creatorcontrib><description>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/23/9/094002</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Actuation ; Actuators ; dielectric elastomer ; Dielectrics ; Elastomers ; Exact sciences and technology ; finite element analysis ; Finite element method ; Folding ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; origami engineering ; Physics ; Three dimensional ; Transducers</subject><ispartof>Smart materials and structures, 2014-09, Vol.23 (9), p.1-10</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</citedby><cites>FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/23/9/094002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27933,27934,53855,53902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28747899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McGough, Kevin</creatorcontrib><creatorcontrib>Ahmed, Saad</creatorcontrib><creatorcontrib>Frecker, Mary</creatorcontrib><creatorcontrib>Ounaies, Zoubeida</creatorcontrib><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</description><subject>Actuation</subject><subject>Actuators</subject><subject>dielectric elastomer</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Exact sciences and technology</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>Folding</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>origami engineering</subject><subject>Physics</subject><subject>Three dimensional</subject><subject>Transducers</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LHTEUhkNpobfqTyhkI-1mevMxk4-lSNWCxYUV3KXnZk4kMjO5JhnBf-9cr0gXhXZ1Pnjec-Ah5DNn3zgzZs2sahuuhVoLubbL2DIm3pEVl4o3SnW378nqjflIPpVyzxjnRvIV-X0Wp1iR4oAjTpXCBMNTiWVpevoIQ-yhxjTRFGgfF8jXHP1CQ6lpxEzB1xlqyoXOBXsa0ssqPiJNOd7BGA_JhwBDwaPXekBuzr7_Or1oLq_Of5yeXDa-NbY2upeIQlove5Sgwkb40HXBM2Vs65lRAB3jqEFu9EYY4KxTWkihvBICjZAH5Ov-7janhxlLdWMsHocBJkxzcVxpba1gnf4PVFippZRsQbs96nMqJWNw2xxHyE-OM7eT73Zi3U6sE9JZt5e_5I5fX0DxMIQMk4_lLSyMbrWxduH4notp6-7TnBf95Z-3v_wlc_3z-k_KbfsgnwEYcKBj</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>McGough, Kevin</creator><creator>Ahmed, Saad</creator><creator>Frecker, Mary</creator><creator>Ounaies, Zoubeida</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Finite element analysis and validation of dielectric elastomer actuators used for active origami</title><author>McGough, Kevin ; Ahmed, Saad ; Frecker, Mary ; Ounaies, Zoubeida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-7d3ee239c3de3a6fb2cf55fc06894c086aa501e7a3b7b28a105672326c622e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>dielectric elastomer</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Exact sciences and technology</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>Folding</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>origami engineering</topic><topic>Physics</topic><topic>Three dimensional</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGough, Kevin</creatorcontrib><creatorcontrib>Ahmed, Saad</creatorcontrib><creatorcontrib>Frecker, Mary</creatorcontrib><creatorcontrib>Ounaies, Zoubeida</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGough, Kevin</au><au>Ahmed, Saad</au><au>Frecker, Mary</au><au>Ounaies, Zoubeida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis and validation of dielectric elastomer actuators used for active origami</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/23/9/094002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2014-09, Vol.23 (9), p.1-10 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_proquest_miscellaneous_1629373330 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Actuation Actuators dielectric elastomer Dielectrics Elastomers Exact sciences and technology finite element analysis Finite element method Folding General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mathematical analysis origami engineering Physics Three dimensional Transducers |
title | Finite element analysis and validation of dielectric elastomer actuators used for active origami |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20and%20validation%20of%20dielectric%20elastomer%20actuators%20used%20for%20active%20origami&rft.jtitle=Smart%20materials%20and%20structures&rft.au=McGough,%20Kevin&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/0964-1726/23/9/094002&rft_dat=%3Cproquest_pasca%3E1677992057%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629373330&rft_id=info:pmid/&rfr_iscdi=true |