Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm
An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2014 |
creator | Abdullah, Ahmed Kareem Zhang, Chao Zhu Abdullah, Ali Abdul Abbas Lian, Siyao |
description | An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information. |
doi_str_mv | 10.1155/2014/324750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629370778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629370778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</originalsourceid><addsrcrecordid>eNqF0M1O3DAQB_AIFYkt9MS5kiUuVVHAX3Gc47IKSyWkHtJK3CKvMwajJKa2Q8uN1-jr8SQ4SsWhF04eeX4z0vyz7JjgM0KK4pxiws8Z5WWB97IVKQTLC8LLD6nGlOeEspuD7GMI9xhTUhC5yob1FN2gotWo_hO90tG6ETVPIcKAjPNo44Yh_ax9tCZ1A7IjqustauztqPqALlSADiVRP7p-mqeVf0JNdCO8PP9N_aZB6_7WeRvvhqNs36Qh-PTvPcx-XtY_Nlf59fftt836OtdMypgzKIEqoXG3Y7SjnGAlq0oCpVhwVWiggEEJIo3aGSl2HXBSaSENI1oZSdlh9mXZ--DdrwlCbAcbNPS9GsFNoSWCVqzEZSkTPfmP3rvJz6e1KVHJK8LEvPB0Udq7EDyY9sHbIV3aEtzO0bdz9O0SfdJfF31nx079tu_gzwuGRMCoN8wFK0rKXgGtLI1B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558491362</pqid></control><display><type>article</type><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao</creator><contributor>Zhang, Yingwei</contributor><creatorcontrib>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao ; Zhang, Yingwei</creatorcontrib><description>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2014/324750</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Brain research ; Electrocardiography ; Electrodes ; Electroencephalography ; Evolutionary ; Evolutionary algorithms ; Extraction ; Genetic algorithms ; Half-life ; Mathematical analysis ; Mathematical problems ; Noise ; Notch filters ; Parameters ; Power ; Signal processing ; Sparsity ; Stone ; Wavelet transforms</subject><ispartof>Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-25</ispartof><rights>Copyright © 2014 Ahmed Kareem Abdullah et al.</rights><rights>Copyright © 2014 Ahmed Kareem Abdullah et al. Ahmed Kareem Abdullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</citedby><cites>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yingwei</contributor><creatorcontrib>Abdullah, Ahmed Kareem</creatorcontrib><creatorcontrib>Zhang, Chao Zhu</creatorcontrib><creatorcontrib>Abdullah, Ali Abdul Abbas</creatorcontrib><creatorcontrib>Lian, Siyao</creatorcontrib><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><title>Mathematical problems in engineering</title><description>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</description><subject>Algorithms</subject><subject>Brain research</subject><subject>Electrocardiography</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Extraction</subject><subject>Genetic algorithms</subject><subject>Half-life</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Noise</subject><subject>Notch filters</subject><subject>Parameters</subject><subject>Power</subject><subject>Signal processing</subject><subject>Sparsity</subject><subject>Stone</subject><subject>Wavelet transforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1O3DAQB_AIFYkt9MS5kiUuVVHAX3Gc47IKSyWkHtJK3CKvMwajJKa2Q8uN1-jr8SQ4SsWhF04eeX4z0vyz7JjgM0KK4pxiws8Z5WWB97IVKQTLC8LLD6nGlOeEspuD7GMI9xhTUhC5yob1FN2gotWo_hO90tG6ETVPIcKAjPNo44Yh_ax9tCZ1A7IjqustauztqPqALlSADiVRP7p-mqeVf0JNdCO8PP9N_aZB6_7WeRvvhqNs36Qh-PTvPcx-XtY_Nlf59fftt836OtdMypgzKIEqoXG3Y7SjnGAlq0oCpVhwVWiggEEJIo3aGSl2HXBSaSENI1oZSdlh9mXZ--DdrwlCbAcbNPS9GsFNoSWCVqzEZSkTPfmP3rvJz6e1KVHJK8LEvPB0Udq7EDyY9sHbIV3aEtzO0bdz9O0SfdJfF31nx079tu_gzwuGRMCoN8wFK0rKXgGtLI1B</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Abdullah, Ahmed Kareem</creator><creator>Zhang, Chao Zhu</creator><creator>Abdullah, Ali Abdul Abbas</creator><creator>Lian, Siyao</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><author>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Brain research</topic><topic>Electrocardiography</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Extraction</topic><topic>Genetic algorithms</topic><topic>Half-life</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Noise</topic><topic>Notch filters</topic><topic>Parameters</topic><topic>Power</topic><topic>Signal processing</topic><topic>Sparsity</topic><topic>Stone</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Ahmed Kareem</creatorcontrib><creatorcontrib>Zhang, Chao Zhu</creatorcontrib><creatorcontrib>Abdullah, Ali Abdul Abbas</creatorcontrib><creatorcontrib>Lian, Siyao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Ahmed Kareem</au><au>Zhang, Chao Zhu</au><au>Abdullah, Ali Abdul Abbas</au><au>Lian, Siyao</au><au>Zhang, Yingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2014/324750</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-25 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629370778 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algorithms Brain research Electrocardiography Electrodes Electroencephalography Evolutionary Evolutionary algorithms Extraction Genetic algorithms Half-life Mathematical analysis Mathematical problems Noise Notch filters Parameters Power Signal processing Sparsity Stone Wavelet transforms |
title | Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Extraction%20System%20for%20Common%20Artifacts%20in%20EEG%20Signals%20Based%20on%20Evolutionary%20Stone%E2%80%99s%20BSS%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Abdullah,%20Ahmed%20Kareem&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2014/324750&rft_dat=%3Cproquest_cross%3E1629370778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558491362&rft_id=info:pmid/&rfr_iscdi=true |