Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm

An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-25
Hauptverfasser: Abdullah, Ahmed Kareem, Zhang, Chao Zhu, Abdullah, Ali Abdul Abbas, Lian, Siyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 2014
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2014
creator Abdullah, Ahmed Kareem
Zhang, Chao Zhu
Abdullah, Ali Abdul Abbas
Lian, Siyao
description An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.
doi_str_mv 10.1155/2014/324750
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629370778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629370778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</originalsourceid><addsrcrecordid>eNqF0M1O3DAQB_AIFYkt9MS5kiUuVVHAX3Gc47IKSyWkHtJK3CKvMwajJKa2Q8uN1-jr8SQ4SsWhF04eeX4z0vyz7JjgM0KK4pxiws8Z5WWB97IVKQTLC8LLD6nGlOeEspuD7GMI9xhTUhC5yob1FN2gotWo_hO90tG6ETVPIcKAjPNo44Yh_ax9tCZ1A7IjqustauztqPqALlSADiVRP7p-mqeVf0JNdCO8PP9N_aZB6_7WeRvvhqNs36Qh-PTvPcx-XtY_Nlf59fftt836OtdMypgzKIEqoXG3Y7SjnGAlq0oCpVhwVWiggEEJIo3aGSl2HXBSaSENI1oZSdlh9mXZ--DdrwlCbAcbNPS9GsFNoSWCVqzEZSkTPfmP3rvJz6e1KVHJK8LEvPB0Udq7EDyY9sHbIV3aEtzO0bdz9O0SfdJfF31nx079tu_gzwuGRMCoN8wFK0rKXgGtLI1B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558491362</pqid></control><display><type>article</type><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao</creator><contributor>Zhang, Yingwei</contributor><creatorcontrib>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao ; Zhang, Yingwei</creatorcontrib><description>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2014/324750</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Brain research ; Electrocardiography ; Electrodes ; Electroencephalography ; Evolutionary ; Evolutionary algorithms ; Extraction ; Genetic algorithms ; Half-life ; Mathematical analysis ; Mathematical problems ; Noise ; Notch filters ; Parameters ; Power ; Signal processing ; Sparsity ; Stone ; Wavelet transforms</subject><ispartof>Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-25</ispartof><rights>Copyright © 2014 Ahmed Kareem Abdullah et al.</rights><rights>Copyright © 2014 Ahmed Kareem Abdullah et al. Ahmed Kareem Abdullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</citedby><cites>FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yingwei</contributor><creatorcontrib>Abdullah, Ahmed Kareem</creatorcontrib><creatorcontrib>Zhang, Chao Zhu</creatorcontrib><creatorcontrib>Abdullah, Ali Abdul Abbas</creatorcontrib><creatorcontrib>Lian, Siyao</creatorcontrib><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><title>Mathematical problems in engineering</title><description>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</description><subject>Algorithms</subject><subject>Brain research</subject><subject>Electrocardiography</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Extraction</subject><subject>Genetic algorithms</subject><subject>Half-life</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Noise</subject><subject>Notch filters</subject><subject>Parameters</subject><subject>Power</subject><subject>Signal processing</subject><subject>Sparsity</subject><subject>Stone</subject><subject>Wavelet transforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1O3DAQB_AIFYkt9MS5kiUuVVHAX3Gc47IKSyWkHtJK3CKvMwajJKa2Q8uN1-jr8SQ4SsWhF04eeX4z0vyz7JjgM0KK4pxiws8Z5WWB97IVKQTLC8LLD6nGlOeEspuD7GMI9xhTUhC5yob1FN2gotWo_hO90tG6ETVPIcKAjPNo44Yh_ax9tCZ1A7IjqustauztqPqALlSADiVRP7p-mqeVf0JNdCO8PP9N_aZB6_7WeRvvhqNs36Qh-PTvPcx-XtY_Nlf59fftt836OtdMypgzKIEqoXG3Y7SjnGAlq0oCpVhwVWiggEEJIo3aGSl2HXBSaSENI1oZSdlh9mXZ--DdrwlCbAcbNPS9GsFNoSWCVqzEZSkTPfmP3rvJz6e1KVHJK8LEvPB0Udq7EDyY9sHbIV3aEtzO0bdz9O0SfdJfF31nx079tu_gzwuGRMCoN8wFK0rKXgGtLI1B</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Abdullah, Ahmed Kareem</creator><creator>Zhang, Chao Zhu</creator><creator>Abdullah, Ali Abdul Abbas</creator><creator>Lian, Siyao</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</title><author>Abdullah, Ahmed Kareem ; Zhang, Chao Zhu ; Abdullah, Ali Abdul Abbas ; Lian, Siyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3e7e2a6c0db32d2410a8998e22064a5ce2e0ea618fabf86bde419c68f31caf823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Brain research</topic><topic>Electrocardiography</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Extraction</topic><topic>Genetic algorithms</topic><topic>Half-life</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Noise</topic><topic>Notch filters</topic><topic>Parameters</topic><topic>Power</topic><topic>Signal processing</topic><topic>Sparsity</topic><topic>Stone</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Ahmed Kareem</creatorcontrib><creatorcontrib>Zhang, Chao Zhu</creatorcontrib><creatorcontrib>Abdullah, Ali Abdul Abbas</creatorcontrib><creatorcontrib>Lian, Siyao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Ahmed Kareem</au><au>Zhang, Chao Zhu</au><au>Abdullah, Ali Abdul Abbas</au><au>Lian, Siyao</au><au>Zhang, Yingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2014/324750</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-25
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1629370778
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Brain research
Electrocardiography
Electrodes
Electroencephalography
Evolutionary
Evolutionary algorithms
Extraction
Genetic algorithms
Half-life
Mathematical analysis
Mathematical problems
Noise
Notch filters
Parameters
Power
Signal processing
Sparsity
Stone
Wavelet transforms
title Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Extraction%20System%20for%20Common%20Artifacts%20in%20EEG%20Signals%20Based%20on%20Evolutionary%20Stone%E2%80%99s%20BSS%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Abdullah,%20Ahmed%20Kareem&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2014/324750&rft_dat=%3Cproquest_cross%3E1629370778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558491362&rft_id=info:pmid/&rfr_iscdi=true